Reasoning with Qualitative Representations: Exploiting the Structure of Space

We present a variety of mechanisms to reason with qualitative representations in general, and qualitative representations of 2-D positional information in particular. One of the simplest is transforming between explicit reference frames (intrinsic, extrinsic, deictic) and a canonical implicit one. Another is computing the composition of spatial relations. Constraint propagation and constraint relaxation form the core of the qualitative inference system. All of them exploit the rich structure of space to reduce the complexity of the algorithms involved. In some cases we even use analogical data structures (abstract maps) that allow us to reason diagrammatically.

[1]  Henry A. Kautz,et al.  Constraint propagation algorithms for temporal reasoning: a revised report , 1989 .

[2]  Christian Freksa,et al.  On the utilization of spatial structures for cognitively plausible and efficient reasoning , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[3]  D. Bobrow Qualitative Reasoning about Physical Systems , 1985 .

[4]  Tod S. Levitt,et al.  Qualitative Navigation for Mobile Robots , 1990, Artif. Intell..

[5]  Kai Zimmermann,et al.  Default Reasoning and the Qualitative Representation of Spatial Knowledge , 1993 .

[6]  Max J. Egenhofer,et al.  A Formal Definition of Binary Topological Relationships , 1989, FODO.

[7]  Christian Freksa,et al.  Using Orientation Information for Qualitative Spatial Reasoning , 1992, Spatio-Temporal Reasoning.

[8]  Amitabha Mukerjee,et al.  A Qualitative Model for Space , 1990, AAAI.

[9]  Max J. Egenhofer,et al.  Reasoning about Binary Topological Relations , 1991, SSD.

[10]  Max J. Egenhofer,et al.  Reasoning about Gradual Changes of Topological Relationships , 1992, Spatio-Temporal Reasoning.

[11]  Andrew U. Frank,et al.  Qualitative Spatial Reasoning with Cardinal Directions , 1991, ÖGAI.

[12]  M. Egenhofer,et al.  Point-Set Topological Spatial Relations , 2001 .

[13]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[14]  Daniel Hernández,et al.  Relative representation of spatial knowledge: the 2-D case , 1990, Forschungsberichte, TU Munich.

[15]  Benjamin Kuipers,et al.  Navigation and Mapping in Large Scale Space , 1988, AI Mag..

[16]  Christian Freksa,et al.  Temporal Reasoning Based on Semi-Intervals , 1992, Artif. Intell..

[17]  Ernst Buchberger,et al.  3. Österreichische Artificial Intelligence-Tagung, Wien, 22.-25. September 1987 , 1987, ÖGAI.