The Absorption and Physiological Function of Food Factors in Intestinal Epithelial Cells

本研究では食品因子の腸管上皮透過機構および腸管上皮細胞機能に対する生理作用を主に細胞レベルで解析した。食品因子はトランスポーターや細胞間隙経路など様々な経路を介して腸管上皮細胞層を透過すること, 一方で腸管上皮トランスポーター活性は他の食品因子によって制御されることが見出された。また腸管上皮モデルCaco-2細胞と活性化マクロファージモデルTHP-1細胞との複合培養系を用いて, 抗腸炎症作用を有する食品因子を探索および解析することに成功した。並行して, ある種のポリフェノールなどが炎症悪化に関与するインターロイキン8の腸管上皮からの分泌を抑制することで, 腸炎症を予防・改善することも示された。さらに生体異物の侵入を防御する解毒排出酵素の発現が, ある種のフィトケミカルによって受容体型転写因子の活性化を介し制御されることが明らかとなった。これらの知見は腸管上皮と食品因子の相互作用を分子・細胞レベルで解析したものであり, 今後さらなる研究の進展が期待される。

[1]  M. Totsuka,et al.  Synergistic Effect of Tumor Necrosis Factor-Alpha and Hydrogen Peroxide on the Induction of IL-8 Production in Human Intestinal Caco-2 Cells , 2011, Inflammation.

[2]  Y. Sugita‐Konishi,et al.  Metabolites of galangin by 2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible cytochrome P450 1A1 in human intestinal epithelial Caco-2 cells and their antagonistic activity toward aryl hydrocarbon receptor. , 2010, Journal of agricultural and food chemistry.

[3]  M. Totsuka,et al.  Permeation of Disaccharides Derived from Chondroitin Sulfate through Human Intestinal Caco-2 Cell Monolayers via the Paracellular Pathway , 2010, Bioscience, biotechnology, and biochemistry.

[4]  M. Shimizu,et al.  Suppressive effect of an isoflavone fraction on tumor necrosis factor-alpha-induced interleukin-8 production in human intestinal epithelial Caco-2 cells. , 2009, Journal of nutritional science and vitaminology.

[5]  M. Shimizu,et al.  Cycloheximide treatment induces the uptake of neutral and dibasic amino acids via the activation of system b(0,+) in human intestinal Caco-2 cells. , 2009, Journal of nutritional science and vitaminology.

[6]  M. Shimizu,et al.  Activation of pregnane X receptor and induction of MDR1 by dietary phytochemicals. , 2008, Journal of agricultural and food chemistry.

[7]  M. Totsuka,et al.  5-caffeoylquinic acid and caffeic acid down-regulate the oxidative stress- and TNF-alpha-induced secretion of interleukin-8 from Caco-2 cells. , 2008, Journal of agricultural and food chemistry.

[8]  M. Totsuka,et al.  Low-Molecular-Weight Hyaluronan Permeates through Human Intestinal Caco-2 Cell Monolayers via the Paracellular Pathway , 2008, Bioscience, biotechnology, and biochemistry.

[9]  M. Totsuka,et al.  Attenuation by dietary taurine of dextran sulfate sodium-induced colitis in mice and of THP-1-induced damage to intestinal Caco-2 cell monolayers , 2008, Amino Acids.

[10]  M. Shimizu,et al.  Transepithelial Transport of α-Lipoic Acid across Human Intestinal Caco-2 Cell Monolayers , 2007 .

[11]  T. Iwanaga,et al.  Induction by activated macrophage-like THP-1 cells of apoptotic and necrotic cell death in intestinal epithelial Caco-2 monolayers via tumor necrosis factor-alpha. , 2006, Experimental cell research.

[12]  H. Ashida,et al.  TCDD-induced CYP1A1 expression, an index of dioxin toxicity, is suppressed by flavonoids permeating the human intestinal Caco-2 cell monolayers. , 2006, Journal of agricultural and food chemistry.

[13]  D. Son,et al.  Histidine inhibits oxidative stress‐ and TNF‐α‐induced interleukin‐8 secretion in intestinal epithelial cells , 2005, FEBS letters.

[14]  M. Shimizu,et al.  Signaling pathways involved in tumor necrosis factor α‐induced upregulation of the taurine transporter in Caco‐2 cells , 2005 .

[15]  M. Shimizu,et al.  In vitro System for Assessing Dioxin Absorption by Intestinal Epithelial Cells and for Preventing this Absorption by Food Substances , 2005, Cytotechnology.

[16]  K. Aizawa,et al.  Inhibitory effect of a bitter melon extract on the P‐glycoprotein activity in intestinal Caco‐2 cells , 2004, British journal of pharmacology.

[17]  M. Shimizu,et al.  Activation of Ca2+/calmodulin‐dependent protein kinase II is involved in hyperosmotic induction of the human taurine transporter , 2004, FEBS letters.

[18]  Timothy M Willson,et al.  The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. , 2002, Endocrine reviews.

[19]  M. Shimizu,et al.  Tumor necrosis factor α stimulates taurine uptake and transporter gene expression in human intestinal Caco‐2 cells , 2002 .

[20]  R. Sato,et al.  Characteristics of Lysophosphatidylcholine in Its Inhibition of Taurine Uptake by Human Intestinal Caco-2 Cells , 2002, Bioscience, biotechnology, and biochemistry.

[21]  S. Arai,et al.  Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. , 2000, Journal of agricultural and food chemistry.

[22]  M. Shimizu,et al.  Identification of a Taurine Transport Inhibitory Substance in Sesame Seeds , 2000, Bioscience, biotechnology, and biochemistry.

[23]  M. Shimizu,et al.  Hypertonicity stimulates taurine uptake and transporter gene expression in Caco-2 cells. , 1999, Biochimica et biophysica acta.

[24]  S. Arai,et al.  Characterization and regulation of taurine transport in Caco-2, human intestinal cells. , 1997, Journal of biochemistry.