Distribution of the lactate/H+ transporter isoforms MCT1 and MCT4 in human skeletal muscle.

The profiles of the lactate/H+ transporter isoforms [monocarboxylate transporter isoforms (MCT)] MCT1 and MCT4 (formerly MCT3 of Price, N. T., V. N. Jackson, and A. P. Halestrap. Biochem. J. 329: 321-328, 1998) were studied in the soleus, triceps brachii, and vastus lateralis muscles of six male subjects. The fiber-type compositions of the muscles were evaluated from the occurrence of the myosin heavy chain isoforms, and the fibers were classified as type I, IIA, or IIX. The total content of MCT1 and MCT4 was determined in muscle homogenates by Western blotting, and MCT1 and MCT4 were visualized on cross-sectional muscle sections by immunofluorescence microscopy. The Western blotting revealed a positive, linear relationship between the MCT1 content and the occurrence of type I fibers in the muscle, but no significant relation was found between MCT4 content and fiber type. Moreover, the interindividual variation in MCT4 content was much larger than the interindividual variation in MCT1 content in homogenate samples. The immunofluorescence microscopy showed that within a given muscle section, the MCT4 isoform was clearly more abundant in type II fibers than in type I fibers, whereas only minor differences existed in the occurrence of the MCT1 isoform between type I and II fibers. Together the present results indicate that the content of MCT1 in a muscle varies between different muscles, whereas fiber-type differences in MCT1 content are minor within a given muscle section. In contrast, the content of MCT4 is clearly fiber-type specific but apparently quite similar in various muscles.

[1]  Henriette Pilegaard,et al.  Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. , 1999, American journal of physiology. Endocrinology and metabolism.

[2]  Y. Hellsten,et al.  Effect of high-intensity exercise training on lactate / H 1 transport capacity in human skeletal muscle , 1999 .

[3]  O. Hutter,et al.  Lactic Acid Efflux from White Skeletal Muscle Is Catalyzed by the Monocarboxylate Transporter Isoform MCT3* , 1998, The Journal of Biological Chemistry.

[4]  N. Philp,et al.  Monocarboxylate transporter MCT1 is located in the apical membrane and MCT3 in the basal membrane of rat RPE. , 1998, American journal of physiology. Regulatory, integrative and comparative physiology.

[5]  N. Price,et al.  Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. , 1998, The Biochemical journal.

[6]  G. Heigenhauser,et al.  Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate. , 1998, American journal of physiology. Endocrinology and metabolism.

[7]  L. Carpenter,et al.  Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. , 1997, The Biochemical journal.

[8]  N. Philp,et al.  Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium. , 1997, Biochemical and biophysical research communications.

[9]  C. Juel Lactate-proton cotransport in skeletal muscle. , 1997, Physiological reviews.

[10]  C. Sansom,et al.  Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1). , 1996, The Biochemical journal.

[11]  A. Bonen,et al.  Role of the lactate transporter (MCT1) in skeletal muscles. , 1996, The American journal of physiology.

[12]  L. Carpenter,et al.  Cloning and sequencing of the monocarboxylate transporter from mouse Ehrlich Lettré tumour cell confirms its identity as MCT1 and demonstrates that glycosylation is not required for MCT1 function. , 1996, Biochimica et biophysica acta.

[13]  M. Delp,et al.  Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle. , 1996, Journal of applied physiology.

[14]  N. Price,et al.  cDNA cloning of MCT1, a monocarboxylate transporter from rat skeletal muscle. , 1995, Biochimica et biophysica acta.

[15]  C. Juel Regulation of cellular pH in skeletal muscle fiber types, studied with sarcolemmal giant vesicles obtained from rat muscles. , 1995, Biochimica et biophysica acta.

[16]  M. Brown,et al.  cDNA Cloning of MCT2, a Second Monocarboxylate Transporter Expressed in Different Cells than MCT1 (*) , 1995, The Journal of Biological Chemistry.

[17]  L. Leinwand,et al.  Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. , 1994, The American journal of physiology.

[18]  J. Bangsbo,et al.  Lactate transport studied in sarcolemmal giant vesicles from human muscle biopsies: relation to training status. , 1994, Journal of applied physiology.

[19]  Richard G. W. Anderson,et al.  Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: Implications for the Cori cycle , 1994, Cell.

[20]  R. Fitts Cellular mechanisms of muscle fatigue. , 1994, Physiological reviews.

[21]  A. Halestrap,et al.  Transport of lactate and other monocarboxylates across mammalian plasma membranes. , 1993, The American journal of physiology.

[22]  D. Pette,et al.  Cellular and molecular diversities of mammalian skeletal muscle fibers. , 1990, Reviews of physiology, biochemistry and pharmacology.

[23]  B. Saltin,et al.  Skeletal Muscle Adaptability: Significance for Metabolism and Performance , 1985 .

[24]  F. Plum Handbook of Physiology. , 1960 .