Multilocus genetic determinants of LDL particle size in coronary artery disease families.

Recent interest in atherosclerosis has focused on the genetic determinants of low-density lipoprotein (LDL) particle size, because of (i) the association of small dense LDL particles with a three-fold increased risk for coronary artery disease (CAD) and (ii) the recent report of linkage of the trait to the LDL receptor (chromosome 19). By utilizing nonparametric quantitative sib-pair and relative-pair analysis methods in CAD families, we tested for linkage of a gene or genes controlling LDL particle sizes with the genetic loci for the major apolipoproteins and enzymes participating in lipoprotein metabolism. We confirmed evidence for linkage to the LDL receptor locus (P=.008). For six candidate gene loci, including apolipoprotein(apo)B, apoAII, apo(a), apoE-CI-CII, lipoprotein lipase, and high-density lipoprotein-binding protein, no evidence for linkage was observed by sib-pair linkage analyses (P values ranged from .24 to .81). However, in addition, we did find tentative evidence for linkage with the apoAI-CIII-AIV locus (chromosome 11) (P=.06) and significant evidence for linkage of the cholesteryl ester transfer protein locus (chromosome 16) (P=.01) and the manganese superoxide dismutase locus (chromosome 6) (P=.001), thus indicating multilocus determination of this atherogenic trait.

[1]  W. Kannel,et al.  Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham study. , 2020, Annals of internal medicine.

[2]  B. Ames,et al.  Oxidative susceptibility of low density lipoprotein subfractions is related to their ubiquinol-10 and alpha-tocopherol content. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Elston,et al.  Genetic contributions to quantitative lipoprotein traits associated with coronary artery disease: analysis of a large pedigree from the Bogalusa Heart Study. , 1993, American journal of medical genetics.

[4]  R. Krauss,et al.  LDL Subclass Phenotypes and the Insulin Resistance Syndrome in Women , 1993, Circulation.

[5]  R. Krauss,et al.  Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. , 1993, The Journal of clinical investigation.

[6]  P. Gambert,et al.  Influence of plasma cholesteryl ester transfer activity on the LDL and HDL distribution profiles in normolipidemic subjects. , 1993, Arteriosclerosis and thrombosis : a journal of vascular biology.

[7]  J. Breslow,et al.  An apolipoprotein CIII haplotype protective against hypertriglyceridemia is specified by promoter and 3' untranslated region polymorphisms. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Sparkes,et al.  Localization of the gene for high-density lipoprotein binding protein (HDLBP) to human chromosome 2q37. , 1993, Genomics.

[9]  S. Humphries,et al.  Genetic markers in the apo AI-CIII-AIV gene cluster for combined hyperlipidemia, hypertriglyceridemia, and predisposition to atherosclerosis. , 1993, Atherosclerosis.

[10]  R. Krauss,et al.  Genetics of LDL subclass phenotypes in women twins. Concordance, heritability, and commingling analysis. , 1993, Arteriosclerosis and thrombosis : a journal of vascular biology.

[11]  S. Humphries Molecular Genetics of Coronary Artery Disease: Candidate Genes and Processes in Artherosclerosis , 1993 .

[12]  P. Wilson,et al.  LDL particle size distribution. Results from the Framingham Offspring Study. , 1992, Arteriosclerosis and thrombosis : a journal of vascular biology.

[13]  M. Austin,et al.  Genetic epidemiology of low-density lipoprotein subclass phenotypes. , 1992, Annals of medicine.

[14]  D. Swinkels,et al.  Both inherited susceptibility and environmental exposure determine the low-density lipoprotein-subfraction pattern distribution in healthy Dutch families. , 1992, American journal of human genetics.

[15]  R. Krauss,et al.  LDL subclass phenotypes and triglyceride metabolism in non-insulin-dependent diabetes. , 1992, Arteriosclerosis and thrombosis : a journal of vascular biology.

[16]  T. Hudson,et al.  Isolation and chromosomal assignment of 100 highly informative human simple sequence repeat polymorphisms. , 1992, Genomics.

[17]  R. Krauss,et al.  Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size. , 1992, Atherosclerosis.

[18]  P. Wilson,et al.  Low density lipoprotein particle size and coronary artery disease. , 1992, Arteriosclerosis and thrombosis : a journal of vascular biology.

[19]  R. Krauss,et al.  Linkage of atherogenic lipoprotein phenotype to the low density lipoprotein receptor locus on the short arm of chromosome 19. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Hamman,et al.  Apolipoprotein A-IV polymorphism, and its role in determining variation in lipoprotein-lipid, glucose and insulin levels in normal and non-insulin-dependent diabetic individuals. , 1991, Atherosclerosis.

[21]  P. Lesnik,et al.  Discrete subspecies of human low density lipoproteins are heterogeneous in their interaction with the cellular LDL receptor. , 1991, Journal of lipid research.

[22]  W. Willett,et al.  Nutrient intake comparisons between Framingham and rural and Urban Puriscal, Costa Rica. Associations with lipoproteins, apolipoproteins, and low density lipoprotein particle size. , 1991, Arteriosclerosis and thrombosis : a journal of vascular biology.

[23]  E. Boerwinkle,et al.  Molecular basis of apolipoprotein (a) isoform size heterogeneity as revealed by pulsed-field gel electrophoresis. , 1991, The Journal of clinical investigation.

[24]  J. Hendriks,et al.  Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. , 1991, Arteriosclerosis and thrombosis : a journal of vascular biology.

[25]  M. Farrall,et al.  Familial combined hyperlipidaemia linked to the apolipoprotein AI–CIII–AIV gene cluster on chromosome 11q23q–q24 , 1991, Nature.

[26]  J. Breslow,et al.  Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. , 1990, Science.

[27]  M. King,et al.  Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. , 1990, Circulation.

[28]  H. Hobbs,et al.  Dinucleotide repeat polymorphism at the 3' end of the LDL receptor gene. , 1990, Nucleic acids research.

[29]  G. Schonfeld,et al.  Genetic heterogeneity of plasma lipoproteins in the mouse: control of low density lipoprotein particle sizes by genetic factors. , 1990, Journal of lipid research.

[30]  K. Hirschhorn Inheritance of low-density lipoprotein subclass patterns: results of complex segregation analysis. , 1989, American journal of human genetics.

[31]  J. Weber,et al.  Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. , 1989, American journal of human genetics.

[32]  R. Lawn,et al.  DNA polymorphism at the locus for human cholesteryl ester transfer protein (CETP) is associated with high density lipoprotein cholesterol and apolipoprotein levels , 1989, Clinical genetics.

[33]  M. King,et al.  Inheritance of low-density lipoprotein subclass patterns: results of complex segregation analysis. , 1988, American journal of human genetics.

[34]  W C Willett,et al.  Low-density lipoprotein subclass patterns and risk of myocardial infarction. , 1988, JAMA.

[35]  S. Antonarakis,et al.  Two polymorphisms for the human hepatic lipase (HL) gene. , 1988, Nucleic acids research.

[36]  G. Bell,et al.  Multiple Taq I RFLPs at the human manganese superoxide dismutase (S0D2) locus on chromosome 6. , 1987, Nucleic acids research.

[37]  R. Lawn,et al.  Multiple RFLPs at the human cholesteryl ester transfer protein (CETP) locus. , 1987, Nucleic acids research.

[38]  R. Krauss,et al.  Relationship of intermediate and low-density lipoprotein subspecies to risk of coronary artery disease. , 1987, American heart journal.

[39]  P. Wilson,et al.  Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. , 1986, JAMA.

[40]  M. Brown,et al.  A receptor-mediated pathway for cholesterol homeostasis. , 1986, Science.

[41]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[42]  R. Havel,et al.  Inhibitory effects of C apolipoproteins from rats and humans on the uptake of triglyceride-rich lipoproteins and their remnants by the perfused rat liver. , 1985, Journal of lipid research.

[43]  J. Ott,et al.  Strategies for multilocus linkage analysis in humans. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Hammond,et al.  A genetic determinant of the phenotypic variance of the molecular weight of low density lipoprotein. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Krauss,et al.  Further Observations on the Activation and Inhibition of Lipoprotein Lipase by Apolipoproteins , 1973, Circulation research.

[46]  R. Elston,et al.  The investigation of linkage between a quantitative trait and a marker locus , 1972, Behavior genetics.

[47]  W. Brown,et al.  Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. , 1972, Biochemical and biophysical research communications.

[48]  V. Schumaker,et al.  POLYDISPERSITY OF HUMAN LOW‐DENSITY LIPOPROTEINS * , 1969, Annals of the New York Academy of Sciences.

[49]  J. Olson Some empirical properties of an all‐relative‐pairs linkage test , 1994, Genetic epidemiology.

[50]  E. Wijsman,et al.  Linkage between quantitative trait and marker loci: Methods using all relative pairs , 1993, Genetic epidemiology.

[51]  R. Krauss,et al.  Linkage analysis of low‐density lipoprotein subclass phenotypes and the apolipoprotein B gene , 1991, Genetic epidemiology.

[52]  S. Yamashita,et al.  Detection of two species of low density lipoprotein particles in cholesteryl ester transfer protein deficiency. , 1991, Arteriosclerosis and thrombosis : a journal of vascular biology.

[53]  H. Barakat,et al.  Influence of obesity, impaired glucose tolerance, and NIDDM on LDL structure and composition. Possible link between hyperinsulinemia and atherosclerosis. , 1990, Diabetes.

[54]  R. Elston,et al.  A more powerful robust sib‐pair test of linkage for quantitative traits , 1989, Genetic epidemiology.

[55]  W L Haskell,et al.  Regional adiposity patterns in relation to lipids, lipoprotein cholesterol, and lipoprotein subfraction mass in men. , 1989, The Journal of clinical endocrinology and metabolism.

[56]  E. Boerwinkle,et al.  Rapid typing of tandemly repeated hypervariable loci by the polymerase chain reaction: application to the apolipoprotein B 3' hypervariable region. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. Schotz,et al.  Twopolymorphisms forthehumanhepatic lipase (HL)gene , 1987 .

[58]  R. Krauss,et al.  Nondenaturing polyacrylamide gradient gel electrophoresis. , 1986, Methods in enzymology.