Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension

ulveda 1 Abstract. We present a fully adaptive multiresolution scheme for spatially one-dimensional quasi- linear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The numerical scheme is based on a finite volume discretization using the Engquist-Osher numerical flux and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used to speed up the CPU time and the memory requirements of the underlying finite volume scheme, whose first-order version is known to converge to an entropy solution of the problem. A particular feature of the method is the storage of the multiresolution representation of the solution in a graded tree, whose leaves are the non-uniform finite volumes on which the numerical divergence is eventually evaluated. Moreover using the L 1 contraction of the discrete time evolution operator we derive the optimal choice of the threshold in the adaptive multiresolution method. Numerical examples illustrate the computational efficiency together with the convergence properties.

[1]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[2]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[4]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[5]  Kai Schneider,et al.  An adaptive multiresolution method for combustion problems: application to flame ball–vortex interaction , 2005 .

[6]  Erwin Fehlberg,et al.  Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme , 1970, Computing.

[7]  M. Crandall,et al.  Monotone difference approximations for scalar conservation laws , 1979 .

[8]  John D. Towers,et al.  Upwind difference approximations for degenerate parabolic convection–diffusion equations with a discontinuous coefficient , 2002 .

[9]  P. I. Richards Shock Waves on the Highway , 1956 .

[10]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[11]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[12]  M J Lighthill,et al.  ON KINEMATIC WAVES.. , 1955 .

[13]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[14]  Anthony Michel,et al.  Entropy Formulation for Parabolic Degenerate Equations with General Dirichlet Boundary Conditions and Application to the Convergence of FV Methods , 2003, SIAM J. Numer. Anal..

[15]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[16]  K. Karlsen,et al.  On some upwind difference schemes for the phenomenological sedimentation-consolidation model , 2001 .

[17]  John D. Towers A Difference Scheme for Conservation Laws with a Discontinuous Flux: The Nonconvex Case , 2001, SIAM J. Numer. Anal..

[18]  E. Fehlberg,et al.  Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems , 1969 .

[19]  Siegfried Müller,et al.  Multiresolution-based adaptive schemes for Hyperbolic Conservation Laws , 2005 .

[20]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[21]  Siegfried Müller,et al.  Fully Adaptive Multiscale Schemes for Conservation Laws Employing Locally Varying Time Stepping , 2007, J. Sci. Comput..

[22]  Kai Schneider,et al.  An adaptive multiresolution method for parabolic PDEs with time-step control , 2009 .

[23]  Steinar Evje,et al.  Monotone Difference Approximations Of BV Solutions To Degenerate Convection-Diffusion Equations , 2000, SIAM J. Numer. Anal..

[24]  John D. Towers,et al.  Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units , 2004, Numerische Mathematik.

[25]  Kai Schneider,et al.  ON SPACE-TIME ADAPTIVE SCHEMES FOR THE NUMERICAL SOLUTION OF PDES ∗, ∗∗, ∗∗∗ , 2007 .

[26]  Peter Deuflhard,et al.  Scientific Computing with Ordinary Differential Equations , 2002 .

[27]  John D. Towers Convergence of a Difference Scheme for Conservation Laws with a Discontinuous Flux , 2000, SIAM J. Numer. Anal..

[28]  José Carrillo Menéndez Entropy solutions for nonlinear degenerate problems , 1999 .

[29]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[30]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[31]  Josef Stoer,et al.  Numerische Mathematik 2 , 1990 .

[32]  R. LeVeque,et al.  Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .

[33]  John D. Towers,et al.  L¹ STABILITY FOR ENTROPY SOLUTIONS OF NONLINEAR DEGENERATE PARABOLIC CONVECTION-DIFFUSION EQUATIONS WITH DISCONTINUOUS COEFFICIENTS , 2003 .

[34]  Raimund Bürger,et al.  Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression , 2003, SIAM J. Appl. Math..

[35]  M. Sepúlveda,et al.  On an upwind difference scheme for strongly degenerate parabolic equations modelling the settling of suspensions in centrifuges and non-cylindrical vessels , 2006 .

[36]  P. Nelson Traveling-wave solutions of the diffusively corrected kinematic-wave model , 2002 .

[37]  Mauricio Sepúlveda,et al.  Multiresolution schemes for strongly degenerate parabolic equations in one space dimension , 2007 .

[38]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[39]  Marsha Berger,et al.  Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws , 1994, SIAM J. Sci. Comput..

[40]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[41]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[42]  N. N. Kuznetsov Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation , 1976 .

[43]  K. Karlsen,et al.  Numerical solution of reservoir flow models based on large time step operator splitting algorithms , 2000 .

[44]  S. Osher,et al.  One-sided difference approximations for nonlinear conservation laws , 1981 .

[45]  Siegfried Müller,et al.  Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.

[46]  Kai Schneider,et al.  Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux , 2008, 0807.0403.

[47]  N. Risebro,et al.  CONVERGENCE OF FINITE DIFFERENCE SCHEMES FOR VISCOUS AND INVISCID CONSERVATION LAWS WITH ROUGH COEFFICIENTS , 2001 .

[48]  Steinar Evje,et al.  On Strongly Degenerate Convection–Diffusion Problems Modeling Sedimentation–Consolidation Processes , 2000 .

[49]  A. Harten Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .

[50]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.

[51]  Raimund Bürger,et al.  ON A DIFFUSIVELY CORRECTED KINEMATIC-WAVE TRAFFIC FLOW MODEL WITH CHANGING ROAD SURFACE CONDITIONS , 2003 .

[52]  H. Greenberg An Analysis of Traffic Flow , 1959 .

[53]  Raimund Bürger,et al.  A Model of Continuous Sedimentation of Flocculated Suspensions in Clarifier-Thickener Units , 2005, SIAM J. Appl. Math..

[54]  Kai Schneider,et al.  An adaptive multiresolution scheme with local time stepping for evolutionary PDEs , 2008, J. Comput. Phys..

[55]  Mauricio Sepúlveda,et al.  A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes , 2005, Math. Comput..