Comments on "Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. II. Submicrometer MOSFETs" [with reply]

For pt.I see ibid., vol.38, no.3, p.634-49, March 1991. MOSFETs with channel lengths smaller than 0.25 mu m with substrates of four different semiconductors and one alloy of the diamond and zinc-blende structures (n-channel Ge, Si, GaAs, InP, In/sub 0.53/Ga/sub 0.47/As, and p-channel Si) were simulated at 77 and 300 K with a self-consistent two-dimensional Monte Carlo program. With the exception of the In-based materials, the speed of the devices appears to be largely independent of the semiconductor. This universal behavior results from the similarity among the medium-energy-scale features of the band structures of the cubic semiconductors. Low-energy concepts, such as mobility and effective mass, fail to describe charge transport as carriers populate a larger fraction of the Brillouin zone in these small devices driven at reasonably high biases. The assumptions made, the approximations used, and, in particular, the meaning of the words speed and reasonably mentioned above are discussed. >

[1]  Charles Kittel,et al.  Quantum Theory of Solids , 1963 .

[2]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[3]  David Pines,et al.  The Many-body Problem , 1971 .

[4]  R. Dennard,et al.  Design of micron MOS switching devices , 1972 .

[5]  Gerald D. Mahan,et al.  Energy gap in Si and Ge: Impurity dependence , 1980 .

[6]  Thomas,et al.  Direct observation of ballistic transport in GaAs. , 1985, Physical review letters.

[7]  Levi,et al.  Injected-hot-electron transport in GaAs. , 1985, Physical review letters.

[8]  Henry I. Smith,et al.  Sub‐100‐nm channel‐length transistors fabricated using x‐ray lithography , 1986 .

[9]  John Batey,et al.  Low‐temperature deposition of high‐quality silicon dioxide by plasma‐enhanced chemical vapor deposition , 1986 .

[10]  R.H. Dennard,et al.  Design and experimental technology for 0.1-µm gate-length low-temperature operation FET's , 1987, IEEE Electron Device Letters.

[11]  Robert Mertens,et al.  Heavy doping effects in silicon , 1987 .

[12]  G. Bernstein,et al.  Velocity overshoot in ultra-short-gate-length GaAs MESFETs , 1988 .

[13]  H. Hier,et al.  High-performance InAlAs/InGaAs HEMTs and MESFETs , 1988, IEEE Electron Device Letters.

[14]  S. Laux,et al.  Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. , 1988, Physical review. B, Condensed matter.

[15]  P. J. Price On the flow equation in device simulation , 1988 .

[16]  H.I. Smith,et al.  Electron velocity overshoot at room and liquid nitrogen temperatures in silicon inversion layers , 1988, IEEE Electron Device Letters.

[17]  Kazuya Masu,et al.  Temperature-Scaling Theory for Low-Temperature-Operated MOSFET with Deep-Submicron Channel , 1988 .

[18]  S. Laux,et al.  Monte-Carlo simulation of submicrometer Si n-MOSFETs at 77 and 300 K , 1988, IEEE Electron Device Letters.

[19]  M. Artaki Hot‐electron flow in an inhomogeneous field , 1988 .

[20]  D. Kern,et al.  High transconductance and velocity overshoot in NMOS devices at the 0.1- mu m gate-length level , 1988, IEEE Electron Device Letters.

[21]  S. Hattangady,et al.  GaAs MIS structures with SiO2 using a thin silicon interlayer , 1988 .

[22]  High-transconductance heterostructure Ga/sub 0.47/In/sub 0.53/As/InP metal-insulator-semiconductor field-effect transistors grown by chemical beam epitaxy , 1988, IEEE Electron Device Letters.

[23]  G. Lucovsky,et al.  Formation of thin film dielectrics by remote plasma-enhanced chemical-vapor deposition (remote PECVD) , 1989 .

[24]  Rolf Landauer,et al.  Can We Switch by Control of Quantum Mechanical Transmission , 1989 .

[25]  J. Li,et al.  High-quality deposited gate oxide MOSFET's and the importance of surface preparation , 1989, IEEE Electron Device Letters.

[26]  D. Buchanan,et al.  Unpinned gallium oxide/GaAs interface by hydrogen and nitrogen surface plasma treatment , 1989 .

[27]  P. Tasker,et al.  Characterization of ultra-high-speed pseudomorphic AlGaAs/InGaAs (on GaAs) MODFETs , 1989 .

[28]  J. Stasiak,et al.  Plasma-enhanced CVD of high quality insulating films , 1989 .

[29]  Masayuki Abe,et al.  Short-channel effects in subquarter-micrometer-gate HEMTs: simulation and experiment , 1989 .

[30]  P. R. Smith,et al.  Quantum functional devices: resonant-tunneling transistors, circuits with reduced complexity, and multiple valued logic , 1989 .

[31]  J. Hutchby,et al.  Demonstration of an n-channel inversion mode GaAs MISFET , 1989, International Technical Digest on Electron Devices Meeting.

[32]  M. Panish,et al.  Ultrahigh‐Speed Bipolar Transistors , 1990 .

[33]  Marc H. Brodsky,et al.  Progress in Gallium Arsenide Semiconductors , 1990 .

[34]  David J. Frank,et al.  Monte Carlo analysis of semiconductor devices: the DAMOCLES program , 1990 .

[35]  S. Datta,et al.  Quantum Electron Devices , 1990 .

[36]  D. Coon,et al.  Quantum effects and bit errors in mesoscopic logic and memory circuits , 1990 .

[37]  M. Fischetti Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport , 1991 .