Symmetric table addition methods for neural network approximations
暂无分享,去创建一个
[1] P. Michael Farmwald. High bandwidth evaluation of elementary functions , 1981, 1981 IEEE 5th Symposium on Computer Arithmetic (ARITH).
[2] Arnaud Tisserand,et al. Some improvements on multipartite table methods , 2001, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001.
[3] Jean-Michel Muller,et al. Elementary Functions: Algorithms and Implementation , 1997 .
[4] Stamatis Vassiliadis,et al. Elementary function generators for neural-network emulators , 2000, IEEE Trans. Neural Networks Learn. Syst..
[5] Stamatis Vassiliadis,et al. Sigmoid Generators for Neural Computing Using Piecewise Approximations , 1996, IEEE Trans. Computers.
[6] Debjit Das Sarma,et al. Measuring the accuracy of ROM reciprocal tables , 1993, Proceedings of IEEE 11th Symposium on Computer Arithmetic.
[7] Michael J. Schulte,et al. The Symmetric Table Addition Method for Accurate Function Approximation , 1999, J. VLSI Signal Process..
[8] Michael J. Schulte,et al. Approximating Elementary Functions with Symmetric Bipartite Tables , 1999, IEEE Trans. Computers.
[9] S. Vassiliadis,et al. High performance with low implementation cost sigmoid generators , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).
[10] Jack E. Volder. The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..
[11] Earl E. Swartzlander,et al. Hardware Designs for Exactly Rounded Elemantary Functions , 1994, IEEE Trans. Computers.
[12] D. J. Myers,et al. Efficient implementation of piecewise linear activation function for digital VLSI neural networks , 1989 .
[13] M. Wedlake,et al. A CORDIC implementation of a digital artificial neuron , 1997, 1997 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, PACRIM. 10 Years Networking the Pacific Rim, 1987-1997.
[14] M. Vellasco,et al. VLSI architectures for neural networks , 1989, IEEE Micro.