EHD stability of a cylindrical boundary separating double Reiner–Rivlin fluids

[1]  G. Moatimid,et al.  Nonlinear EHD instability of two viscoelastic fluids under the influence of mass and heat transfer , 2023, Scientific Reports.

[2]  G. Moatimid,et al.  Ehd Stability of Two Horizontal Finite Conducting Rotating Viscous Fluids: Effects of Energy and Concentration Distributions , 2022, SSRN Electronic Journal.

[3]  G. Moatimid,et al.  Nonlinear EHD stability of cylindrical walters B' fluids: effect of an axial time periodic electric field , 2021, Chinese Journal of Physics.

[4]  J. Chung,et al.  Bioconvective Reiner–Rivlin nanofluid flow over a rotating disk with Cattaneo–Christov flow heat flux and entropy generation analysis , 2021, Scientific Reports.

[5]  F. Capone,et al.  The onset of thermal convection in anisotropic and rotating bidisperse porous media , 2021, Zeitschrift für angewandte Mathematik und Physik.

[6]  G. Moatimid,et al.  Electrohydrodynamic Instability of a Cylindrical Interface: Effect of the Buoyancy Thermo-Capillary in Porous Media , 2021, Microgravity Science and Technology.

[7]  L. Forbes,et al.  The Rayleigh–Taylor instability in a porous medium , 2021, SN Applied Sciences.

[8]  G. Moatimid,et al.  Nonlinear EHD Instability of a Cylindrical Interface Between Two Walters B' Fluids in Porous Media , 2021, Journal of Porous Media.

[9]  M. Mustafa,et al.  A study of heat transfer and entropy generation in von Kármán flow of Reiner-Rivlin fluid due to a stretchable disk , 2020 .

[10]  D. Yadav The effect of viscosity and Darcy number on the start of convective motion in a rotating porous medium layer saturated by a couple-stress fluid , 2020 .

[11]  Syed Muhammad Raza Shah Naqvi,et al.  Numerical study for slip flow of Reiner-Rivlin nanofluid due to a rotating disk , 2020 .

[12]  Li-jun Yang,et al.  Linear stability of confined swirling annular liquid layers in the presence of gas velocity oscillations with heat and mass transfer , 2019, International Journal of Heat and Mass Transfer.

[13]  G. Moatimid,et al.  Nonlinear electrohydrodynamic instability through two jets of an Oldroydian viscoelastic fluids with a porous medium under the influence of electric field , 2019, AIP Advances.

[14]  G. Moatimid,et al.  ELECTROHYDRODYNAMIC INSTABILITY OF A STREAMING DIELECTRIC VISCOUS LIQUID JET WITH MASS AND HEAT TRANSFER , 2019, Atomization and Sprays.

[15]  M. Mustafa,et al.  A numerical treatment for partial slip flow and heat transfer of non-Newtonian Reiner-Rivlin fluid due to rotating disk , 2018, International Journal of Heat and Mass Transfer.

[16]  Li-jun Yang,et al.  Stability of a confined swirling annular liquid layer with heat and mass transfer , 2017 .

[17]  M. Awasthi,et al.  Viscous potential flow analysis of magnetohydrodynamic capillary instability with heat and mass transfer , 2015 .

[18]  M. El-Sayed,et al.  ELECTROHYDRODYNAMIC INSTABILITY OF NON-NEWTONIAN DIELECTRIC LIQUID SHEET ISSUED INTO STREAMING DIELECTRIC GASEOUS ENVIRONMENT , 2015 .

[19]  M. Awasthi Three-dimensional magnetohydrodynamic Kelvin–Helmholtz instability of cylindrical flow with permeable boundaries , 2014 .

[20]  M. Awasthi,et al.  Viscous potential flow analysis of capillary instability with heat and mass transfer through porous media , 2013 .

[21]  R. Asthana,et al.  Viscous corrections for the viscous potential flow analysis of magnetohydrodynamic Kelvin-Helmholtz instability with heat and mass transfer , 2012, The European Physical Journal A.

[22]  M. Haroun,et al.  Nonlinear Kelvin-Helmholtz instability of Rivlin-Ericksen viscoelastic electrified fluid-particle mixtures saturating porous media , 2012 .

[23]  F. Capone,et al.  Double-diffusive penetrative convection simulated via internal heating in an anisotropic porous layer with throughflow , 2011 .

[24]  Abd Elmonem Khalil Elcoot Weakly nonlinear EHD stability of slightly viscous jet , 2009 .

[25]  Vivette Girault,et al.  DISCRETIZATION OF AN UNSTEADY FLOW THROUGH A POROUS SOLID MODELED BY DARCY'S EQUATIONS , 2008 .

[26]  N. Aubry,et al.  Linear stability of a two-fluid interface for electrohydrodynamic mixing in a channel , 2007, Journal of Fluid Mechanics.

[27]  H. A. Attia The effect of ion slip on the flow of Reiner-Rivlin fluid due a rotating disk with heat transfer , 2007 .

[28]  H. A. Attia Numerical study of the flow and heat transfer in a Renier-Rivlin fluid on a rotating porous disk , 2005 .

[29]  H. A. Attia Numerical study of the flow and heat transfer in a Reiner-Rivlin fluid on a rotating porous disk , 2005 .

[30]  Doo-sung Lee Nonlinear stability in magnetic fluids of cylindrical interface with mass and heat transfer , 2002 .

[31]  Djamel Lakehal,et al.  Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows , 2002 .

[32]  D. Saville ELECTROHYDRODYNAMICS:The Taylor-Melcher Leaky Dielectric Model , 1997 .

[33]  J. Hartnett,et al.  Heat transfer behavior of Reiner-Rivlin fluids in rectangular ducts , 1996 .

[34]  A. Elhefnawy Nonlinear electrohydrodynamic instability of capillary-gravity waves under the influence of a perpendicular field , 1994 .

[35]  Vimal Singh,et al.  Perturbation methods , 1991 .

[36]  A. F. Kosterin Some rheological properties of Reiner-Rivlin fluids , 1978 .

[37]  D. Hsieh Interfacial stability with mass and heat transfer , 1978 .

[38]  Alan C. Newell,et al.  A Stability Criterion for Envelope Equations , 1974 .

[39]  D. Hsieh Effects of Heat and Mass Transfer on Rayleigh-Taylor Instability , 1972 .

[40]  J. Melcher,et al.  Electrohydrodynamic Charge Relaxation and Interfacial Perpendicular‐Field Instability , 1969 .

[41]  J. R. Melcher,et al.  Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses , 1969 .

[42]  D. T. Swift-Hook,et al.  Field-Coupled Surface Waves , 1964 .

[43]  R. Rivlin,et al.  The hydrodynamics of non-Newtonian fluids. I , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[44]  R. Rivlin,et al.  Hydrodynamics of Non-Newtonian Fluids , 1947, Nature.

[45]  M. Reiner,et al.  A Mathematical Theory of Dilatancy , 1945 .