The rank of diluted random graphs.

We investigate the rank of the adjacency matrix of large diluted random graphs: for a sequence of graphs $(G_n)_{n\geq0}$ converging locally to a Galton--Watson tree $T$ (GWT), we provide an explicit formula for the asymptotic multiplicity of the eigenvalue 0 in terms of the degree generating function $\phi_*$ of $T$. In the first part, we show that the adjacency operator associated with $T$ is always self-adjoint; we analyze the associated spectral measure at the root and characterize the distribution of its atomic mass at 0. In the second part, we establish a sufficient condition on $\phi_*$ for the expectation of this atomic mass to be precisely the normalized limit of the dimension of the kernel of the adjacency matrices of $(G_n)_{n\geq 0}$. Our proofs borrow ideas from analysis of algorithms, functional analysis, random matrix theory and statistical physics.

[1]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[2]  Alan M. Frieze,et al.  Karp–Sipser on Random Graphs with a Fixed Degree Sequence , 2011, Combinatorics, Probability and Computing.

[3]  M. Lelarge,et al.  The weak limit of Boltzmann random matchings on diluted graphs , 2010 .

[4]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[5]  S. Evans,et al.  Spectra of Large Random Trees , 2009, 0903.3589.

[6]  Marc Lelarge,et al.  Resolvent of large random graphs , 2007, Random Struct. Algorithms.

[7]  Kevin P. Costello,et al.  The rank of random graphs , 2006, Random Struct. Algorithms.

[8]  Lenka Zdeborová,et al.  The number of matchings in random graphs , 2006, ArXiv.

[9]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[10]  Kevin P. Costello,et al.  Random symmetric matrices are almost surely nonsingular , 2005, math/0505156.

[11]  M. Aizenman,et al.  Stability of the Absolutely Continuous Spectrum of Random Schrödinger Operators on Tree Graphs , 2005, math-ph/0502006.

[12]  Mariya Shcherbina,et al.  Eigenvalue distribution of large weighted random graphs , 2004 .

[13]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[14]  R. Kenyon Local statistics of lattice dimers , 2001, math/0105054.

[15]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[16]  M. Bauer,et al.  Exactly solvable model with two conductor-insulator transitions driven by impurities. , 2000, Physical review letters.

[17]  M. Bauer,et al.  On the kernel of tree incidence matrices , 2000, cond-mat/0003049.

[18]  A. Klein Extended States in the Anderson Model on the Bethe Lattice , 1998 .

[19]  B. McKay The expected eigenvalue distribution of a large regular graph , 1981 .

[20]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[21]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[22]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[23]  Michael Doob,et al.  Spectra of graphs , 1980 .

[24]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .