n-MOSFET With Silicon–Carbon Source/Drain for Enhancement of Carrier Transport

A novel strained-silicon (Si) n-MOSFET with 50-nm gate length is reported. The strained n-MOSFET features silicon-carbon (Si<sub>1-y</sub>C<sub>y</sub>) source and drain (S/D) regions formed by a Si recess etch and a selective epitaxy of Si<sub>1-y</sub>C<sub>y</sub> in the S/D regions. The carbon mole fraction incorporated is 0.013. Lattice mismatch of ~0.56% between Si <sub>0.987</sub>C<sub>0.013</sub> and Si results in lateral tensile strain and vertical compressive strain in the Si channel region, both contributing to substantial electron-mobility enhancement. The conduction-band offset DeltaE<sub>c</sub> between the Si<sub>0.987 </sub>C<sub>0.013</sub> source and the strained Si channel could also contribute to an increased electron injection velocity nu<sub>inj</sub> from the source. Implementation of the Si<sub>0.987 </sub>C<sub>0.013</sub> S/D regions for n-MOSFET provides significant drive current I<sub>Dsat</sub> enhancement of up to 50% at a gate length of 50 nm

[1]  Y. Yeo,et al.  Substrate-strained silicon technology: process integration [CMOS technology] , 2003, IEEE International Electron Devices Meeting 2003.

[2]  T. Ernst,et al.  A new Si:C epitaxial channel nMOSFET architecture with improved drivability and short-channel characteristics , 2003, 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407).

[3]  P. Kelires Short-range order, bulk moduli, and physical trends in c-Si 1-x C x alloys , 1997 .

[4]  D. J. Lockwood,et al.  Lattice vibrations of Si1-xCx epilayers on Si(100) , 2003 .

[5]  J. Welser,et al.  Strain dependence of the performance enhancement in strained-Si n-MOSFETs , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[6]  Y. Yeo,et al.  Process-strained Si (PSS) CMOS technology featuring 3D strain engineering , 2003, IEEE International Electron Devices Meeting 2003.

[7]  H. Nayfeh,et al.  Strained silicon MOSFET technology , 2002, Digest. International Electron Devices Meeting,.

[8]  Vivek Subramanian,et al.  Application of silicon-germanium in the fabrication of ultra-shallow extension junctions for sub-100 nm PMOSFETs , 2002 .

[9]  R. Rooyackers,et al.  25% drive current improvement for p-type multiple gate FET (MuGFET) devices by the introduction of recessed Si/sub 0.8/Ge/sub 0.2/ in the source and drain regions , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[10]  M. Silberstein,et al.  A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors , 2003, IEEE International Electron Devices Meeting 2003.

[11]  Kah-Wee Ang,et al.  Lattice strain analysis of transistor structures with silicon–germanium and silicon–carbon source∕drain stressors , 2005 .

[12]  H. J. Osten,et al.  Influence of interstitial carbon defects on electron transport in strained Si1−yCy layers on Si(001) , 2000 .

[13]  H. J. Osten,et al.  Dopant diffusion in C-doped Si and SiGe: physical model and experimental verification , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[14]  T. Tezuka,et al.  High velocity electron injection MOSFETs for ballistic transistors using SiGe/strained-Si heterojunction source structures , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[15]  K. Yamaguchi,et al.  Mechanical stress effect of etch-stop nitride and its impact on deep submicron transistor design , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[16]  J. Hartmann,et al.  Reduced pressure chemical vapor deposition of Si/Si1-yCy heterostructures for n-type metal-oxide-semiconductor transistors , 2002 .

[17]  Y. Yeo,et al.  Enhanced performance in 50 nm N-MOSFETs with silicon-carbon source/drain regions , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[18]  K. Rim,et al.  Fabrication and analysis of deep submicron strained-Si n-MOSFET's , 2000 .

[19]  M. Lundstrom,et al.  Essential physics of carrier transport in nanoscale MOSFETs , 2002 .

[20]  Brunner,et al.  Near-band-edge photoluminescence from pseudomorphic Si1-yCy/Si quantum well structures. , 1996, Physical review letters.

[21]  K. Natori Ballistic metal-oxide-semiconductor field effect transistor , 1994 .

[22]  Yee-Chia Yeo,et al.  Finite-element study of strain distribution in transistor with silicon–germanium source and drain regions , 2005 .

[23]  K. Jenkins,et al.  Measurement of the effect of self-heating in strained-silicon MOSFETs , 2002, IEEE Electron Device Letters.

[24]  G. E. Pikus,et al.  Symmetry and strain-induced effects in semiconductors , 1974 .

[25]  R. Chau,et al.  A 90-nm logic technology featuring strained-silicon , 2004, IEEE Transactions on Electron Devices.

[26]  M. Ieong,et al.  Characteristics and device design of sub-100 nm strained Si N- and PMOSFETs , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).