Merging segmental and rhythmic features for Automatic Language Identification

This paper deals with an approach to Automatic Language Identification based on rhythmic modeling and vowel system modeling. Experiments are performed on read speech for 5 European languages. They show that rhythm and stress may be automatically extracted and are relevant in language identification: using cross-validation, 78% of correct identification is reached with 21 s. utterances. The Vowel System Modeling, tested in the same conditions (cross-validation), is efficient and results in a 70% of correct identification for the 21 s. utterances. Last. merging the two models slightly improves the results.