Generative Autotransporters

In this paper, we aim to introduce the classic Optimal Transport theory to enhance deep generative probabilistic modeling. For this purpose, we design a Generative Autotransporter (GAT) model with explicit distribution optimal transport. Particularly, the GAT model owns a deep distribution transporter to transfer the target distribution to a specific prior probability distribution, which enables a regular decoder to generate target samples from the input data that follows the transported prior distribution. With such a design, the GAT model can be stably trained to generate novel data by merely using a very simple l1 reconstruction loss function with a generalized manifold-based Adam training algorithm. The experiments on two standard benchmarks demonstrate its strong generation ability.

[1]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[2]  Ole Winther,et al.  Auxiliary Deep Generative Models , 2016, ICML.

[3]  Koray Kavukcuoglu,et al.  Pixel Recurrent Neural Networks , 2016, ICML.

[4]  Surya Ganguli,et al.  Deep Unsupervised Learning using Nonequilibrium Thermodynamics , 2015, ICML.

[5]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[6]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[7]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[8]  Léon Bottou,et al.  Towards Principled Methods for Training Generative Adversarial Networks , 2017, ICLR.

[9]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[10]  Gabriel Peyré,et al.  Stochastic Optimization for Large-scale Optimal Transport , 2016, NIPS.

[11]  Matthias Bethge,et al.  Generative Image Modeling Using Spatial LSTMs , 2015, NIPS.

[12]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[13]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[14]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[15]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[16]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[17]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[18]  François Pitié,et al.  Automated colour grading using colour distribution transfer , 2007, Comput. Vis. Image Underst..

[19]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[20]  Luc Van Gool,et al.  A Riemannian Network for SPD Matrix Learning , 2016, AAAI.

[21]  Yann LeCun,et al.  Energy-based Generative Adversarial Network , 2016, ICLR.

[22]  Yingyu Liang,et al.  Generalization and Equilibrium in Generative Adversarial Nets (GANs) , 2017, ICML.

[23]  Ruslan Salakhutdinov,et al.  Importance Weighted Autoencoders , 2015, ICLR.

[24]  N. Papadakis Optimal Transport for Image Processing , 2015 .

[25]  Esteban G. Tabak,et al.  Data‐Driven Optimal Transport , 2016 .

[26]  Valero Laparra,et al.  Density Modeling of Images using a Generalized Normalization Transformation , 2015, ICLR.

[27]  Nicolas Courty,et al.  Optimal Transport for Domain Adaptation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[29]  Tim Salimans,et al.  Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks , 2016, NIPS.

[30]  Sebastian Nowozin,et al.  Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks , 2017, ICML.

[31]  Joan Bruna,et al.  Super-Resolution with Deep Convolutional Sufficient Statistics , 2015, ICLR.

[32]  Nicolas Courty,et al.  Mapping Estimation for Discrete Optimal Transport , 2016, NIPS.

[33]  David Berthelot,et al.  BEGAN: Boundary Equilibrium Generative Adversarial Networks , 2017, ArXiv.