A Posteriori Finite Element Error Estimation for Diffusion Problems

Adjerid, Babuska, and Flaherty [ Math. Models Methods Appl. Sci., 9 (1999), pp. 261--286] and Yu [Math. Numer. Sinica, 13 (1991), pp. 89--101] and [Math. Numer. Sinica, 13 (1991), pp. 307--314] show that a posteriori estimates of spatial discretization errors of piecewise bi- p polynomial finite element solutions of elliptic and parabolic problems on meshes of square elements may be obtained from jumps in solution gradients at element vertices when p is odd and from local elliptic or parabolic problems when p is even. We show that these simple error estimates are asymptotically correct for other finite element spaces. The key requirement is that the trial space contain all monomial terms of degree p + 1 except for $ x_1^{p+1}$ and $ x_2^{p+1}$ in a Cartesian (x1,x2 ) frame. Computational results show that the error estimates are accurate, robust, and efficient for a wide range of problems, including some that are not supported by the present theory. These involve quadrilateral-element meshes, problems with singularities, and nonlinear problems.

[1]  Joseph E. Flaherty,et al.  A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems , 1993 .

[2]  Ivo Babuška,et al.  A POSTERIORI ERROR ESTIMATION FOR THE FINITE ELEMENT METHOD-OF-LINES SOLUTION OF PARABOLIC PROBLEMS , 1999 .

[3]  M. Ainsworth The influence and selection of subspaces for a posteriori error estimators , 1996 .

[4]  T. Strouboulis,et al.  Recent experiences with error estimation and adaptivity. Part I: Review of error estimators for scalar elliptic problems , 1992 .

[5]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[6]  Joseph E. Flaherty,et al.  High-Order Finite Element Methods for Singularly Perturbed Elliptic and Parabolic Problems , 1995, SIAM J. Appl. Math..

[7]  P. Carnevali,et al.  New basis functions and computational procedures for p‐version finite element analysis , 1993 .

[8]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[9]  Khalid Ansar Haque,et al.  Recent experiences with error estimation and adaptivity , 1991 .

[10]  Ivo Babuška,et al.  Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .

[11]  W. Fuyu,et al.  Factors influencing output non-linearity error of a high-precision load sensor and the error calculation , 1987 .

[12]  L. Ridgway Scott,et al.  Error control and mesh optimization for high-order finite element approximation of incompressible viscous flow , 1997 .

[13]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[14]  Martin Berzins Global Error Estimation in the Method of Lines for Parabolic Equations , 1988 .

[15]  Ivo Babuška,et al.  Pollution-error in the h -version of the finite-element method and the local quality of a-posteriori error estimators , 1994 .

[16]  J. Z. Zhu,et al.  The finite element method , 1977 .

[17]  Douglas H. Norrie,et al.  An introduction to finite element analysis , 1978 .

[18]  Joseph E. Flaherty,et al.  Integrated space-time adaptive hp -refinement methods for parabolic systems , 1995 .

[19]  H. Saunders Book Reviews : The Finite Element Method (Revised): O.C. Zienkiewicz McGraw-Hill Book Co., New York, New York , 1980 .