3D Object Reconstruction and Recognition Techniques Based on Digital Holography

Yann Frauel, Enrique Tajahuerce, Osamu Matoba, Albertina Castro, and Bahram Javidi IIMAS, Universidad Nacional Aut onoma de M exico, Mexico Departament de Ciencies Experimentals, Universitat Jaume I, Spain Department of Computer and System Engineering, Kobe University, Japan Instituto Nacional de Astrof sica, Optica y Electr onica, Mexico Department of Electrical and Computer Engineering, University of Connecticut, USA

[1]  J Rosen,et al.  Three-dimensional joint transform correlator. , 1998, Applied optics.

[2]  J. Goodman,et al.  A technique for optically convolving two functions. , 1966, Applied optics.

[3]  B Javidi,et al.  Three-dimensional object recognition by use of digital holography. , 2000, Optics letters.

[4]  D. J. Brangaccio,et al.  Digital wavefront measuring interferometer for testing optical surfaces and lenses. , 1974, Applied optics.

[5]  B Javidi,et al.  Nonlinear joint-transform correlation: an optimal solution for adaptive image discrimination and input noise robustness. , 1994, Optics letters.

[6]  B Javidi,et al.  Real-time three-dimensional object recognition with multiple perspectives imaging. , 2001, Applied optics.

[7]  Demetri Psaltis,et al.  Real-time vehicle navigation using a holographic memory , 1997 .

[8]  B Javidi,et al.  Neural network for three-dimensional object recognition based on digital holography. , 2001, Optics letters.

[9]  R. W. Lawrence,et al.  Digital Image Formation From Electronically Detected Holograms , 1967 .

[10]  Bahram Javidi,et al.  Three-Dimensional Television, Video and Display Technology , 2002 .

[11]  B. Javidi Nonlinear joint power spectrum based optical correlation. , 1989, Applied optics.

[12]  D Casasent,et al.  Unified synthetic discriminant function computational formulation. , 1984, Applied optics.

[13]  H. J. Caulfield Handbook of Optical Holography , 1979 .

[14]  Jaime Meneses,et al.  Object recognition using three-dimensional correlation of range images , 2000 .

[15]  Bahram Javidi,et al.  Image Recognition and Classification: Algorithms, Systems, and Applications , 2002 .

[16]  G W Burr,et al.  Thermal fixing of 10,000 Holograms in LiNbO3:Fe. , 1999, Applied optics.

[17]  A. B. Vanderlugt SIGNAL DETECTION BY COMPLEX SPATIAL FILTERING , 1963 .

[18]  B Javidi,et al.  Distortion-tolerant three-dimensional object recognition with digital holography. , 2001, Applied optics.

[19]  U Gehlhaar,et al.  Compact and highly sensitive fluorescence lidar for oceanographic measurements. , 1981, Applied optics.

[20]  J. Goodman Introduction to Fourier optics , 1969 .

[21]  A. VanderLugt,et al.  Optical Signal Processing , 1990 .

[22]  U. Schnars,et al.  Direct recording of holograms by a CCD target and numerical reconstruction. , 1994, Applied optics.

[23]  Ichirou Yamaguchi,et al.  Phase-shifting digital holography , 1997 .

[24]  A. B. Vander Lugt,et al.  Signal detection by complex spatial filtering , 1964, IEEE Trans. Inf. Theory.

[25]  Osamu Matoba,et al.  Comparison of passive ranging integral imaging and active imaging digital holography for three-dimensional object recognition. , 2004, Applied optics.

[26]  J García,et al.  Three-dimensional object recognition by fourier transform profilometry. , 1999, Applied optics.

[27]  B Javidi,et al.  Shift-invariant three-dimensional object recognition by means of digital holography. , 2001, Applied optics.

[28]  Takanori Okoshi Three-Dimensional Imaging Techniques , 1976 .

[29]  Bahram Javidi,et al.  Distortion-invariant pattern recognition with Fourier-plane nonlinear filters. , 1996, Applied optics.

[30]  Carlos Ferreira,et al.  Fast algorithms for free-space diffraction patterns calculation , 1999 .

[31]  J. Horner,et al.  Phase-only matched filtering. , 1984, Applied optics.

[32]  G Roosen,et al.  High-capacity photorefractive neural network implementing a kohonen topological map. , 2001, Applied optics.

[33]  Bahram Javidi,et al.  Real-time optical information processing , 1994 .