Effect of carbon nanotube surface modification on dispersion and structural properties of electrospun fibers

Covalent surface modification of multiwall carbon nanotubes leads to enhanced nanotube dispersion in the polymer. Despite this, the mechanical properties of electrospun fibers made of polymethylmethacrylate containing surface modified nanotubes generally fall below those of fibers with pristine nanotubes, sometimes below those of pure polymer fibers. We show that covalent functionalization produces defects in the graphene structure, leading to mechanical weakening of the nanotube and, therefore, of the nanocomposite.

[1]  M. Herranz,et al.  Carbon Nanotubes and Related Structures , 2010 .

[2]  M. Maugey,et al.  Raman Response of Carbon Nanotube/PVA Fibers under Strain , 2009 .

[3]  H. Wagner,et al.  Tough nanocomposites: the role of carbon nanotube type. , 2009, Nano letters.

[4]  Xiaoqiao He,et al.  Young’s moduli of functionalized single-wall carbon nanotubes under tensile loading , 2009 .

[5]  Y. Huang,et al.  Mechanical properties of functionalized carbon nanotubes , 2008, Nanotechnology.

[6]  L. Brinson,et al.  Functionalized graphene sheets for polymer nanocomposites. , 2008, Nature nanotechnology.

[7]  S. Hooker,et al.  Measurement Issues in Single-Wall Carbon Nanotubes | NIST , 2008 .

[8]  Maurizio Prato,et al.  Tensile Mechanics of Electrospun Multiwalled Nanotube/Poly(methyl methacrylate) Nanofibers , 2007 .

[9]  Oleg Gendelman,et al.  Effect of supramolecular structure on polymer nanofibre elasticity. , 2007, Nature nanotechnology.

[10]  Jonathan N. Coleman,et al.  Mechanical Reinforcement of Polymers Using Carbon Nanotubes , 2006 .

[11]  E. Lifshitz,et al.  Alignment of colloidal CdS nanowires embedded in polymer nanofibers by electrospinning. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  K. Balasubramanian,et al.  Chemically functionalized carbon nanotubes. , 2005, Small.

[13]  Y. Cohen,et al.  Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[14]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[15]  F. Cleri,et al.  Chemisorption of atomic hydrogen in graphite and carbon nanotubes , 2003 .

[16]  Eyal Zussman,et al.  Carbon Nanotubes Embedded in Oriented Polymer Nanofibers by Electrospinning , 2003 .

[17]  J. Tour,et al.  Covalent chemistry of single-wall carbon nanotubes , 2002 .

[18]  M. Prato,et al.  Organic functionalization of carbon nanotubes. , 2002, Journal of the American Chemical Society.

[19]  A. Rinzler,et al.  ALIGNED SINGLE-WALL CARBON NANOTUBES IN COMPOSITES BY MELT PROCESSING METHODS , 2000 .

[20]  Cheng,et al.  Polarized raman study of single-wall semiconducting carbon nanotubes , 2000, Physical review letters.

[21]  Rao,et al.  Polarized raman study of aligned multiwalled carbon nanotubes , 2000, Physical review letters.

[22]  Robert C. Haddon,et al.  Nanotube composite carbon fibers , 1999 .

[23]  Susan B. Sinnott,et al.  Effect of chemical functionalization on the mechanical properties of carbon nanotubes , 1998 .

[24]  H. Wagner,et al.  Evaluation of Young’s Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy , 1998 .

[25]  P. Ajayan,et al.  Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite , 1994, Science.