High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review

Abstract One possible solution of combating issues posed by climate change is the use of the High Temperature (HT) Polymer Electrolyte Membrane (PEM) Fuel Cell (FC) in some applications. The typical HT-PEMFC operating temperatures are in the range of 100–200 °C which allows for co-generation of heat and power, high tolerance to fuel impurities and simpler system design. This paper reviews the current literature concerning the HT-PEMFC, ranging from cell materials to stack and stack testing. Only acid doped PBI membranes meet the US DOE (Department of Energy) targets for high temperature membranes operating under no humidification on both anode and cathode sides (barring the durability). This eliminates the stringent requirement for humidity however, they have many potential drawbacks including increased degradation, leaching of acid and incompatibility with current state-of-the-art fuel cell materials. In this type of fuel cell, the choice of membrane material determines the other fuel cell component material composition, for example when using an acid doped system, the flow field plate material must be carefully selected to take into account the advanced degradation. Novel research is required in all aspects of the fuel cell components in order to ensure that they meet stringent durability requirements for mobile applications.

[1]  Sukhvinder P.S. Badwal,et al.  Design, assembly and operation of polymer electrolyte membrane fuel cell stacks to 1 kWe capacity , 2004 .

[2]  Jae Wook Lee,et al.  Preparation of Nafion/sulfonated poly(phenylsilsesquioxane) nanocomposite as high temperature proton exchange membranes , 2008 .

[3]  Qingfeng Li,et al.  Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C , 2003 .

[4]  Jingwei Hu,et al.  Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI , 2006 .

[5]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[6]  Xinping Qiu,et al.  Electrochemical characters and structure changes of electrochemically treated Pt nanoparticles , 2010 .

[7]  Jürgen Mergel,et al.  Durability of ABPBI‐based MEAs for High Temperature PEMFCs at Different Operating Conditions , 2008 .

[8]  Bruno G. Pollet,et al.  Proton exchange membrane fuel cell degradation and testing: review , 2012 .

[9]  Antonino S. Aricò,et al.  Performance and degradation of high temperature polymer electrolyte fuel cell catalysts , 2008 .

[10]  Xuan Cheng,et al.  Hydrogen crossover in high-temperature PEM fuel cells , 2007 .

[11]  Chang-Soo Kim,et al.  Performance of a poly(2,5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide , 2006 .

[12]  Torsten Berning,et al.  Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte , 2006 .

[13]  Yu Wei,et al.  Improvement in high temperature proton exchange membrane fuel cells cathode performance with ammonium carbonate , 2005 .

[14]  O. J. Murphy,et al.  Low-cost light weight high power density PEM fuel cell stack , 1998 .

[15]  Joseph Jagur-Grodzinski,et al.  Polymeric materials for fuel cells: concise review of recent studies† , 2007 .

[16]  P. Rodatz,et al.  Operational aspects of a large PEFC stack under practical conditions , 2004 .

[17]  Mark R. Wiesner,et al.  Proton conductivity and methanol rejection by ceramic membranes derived from ferroxane and alumoxane precursors , 2007 .

[18]  Pedro Gómez-Romero,et al.  Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. , 2010, Chemical Society reviews.

[19]  Zhongjun Hou,et al.  Preparation and characterization of a modified montmorillonite/sulfonated polyphenylether sulfone/PTFE composite membrane , 2011 .

[20]  Bumwook Roh,et al.  Development of highly active and stable non-precious oxygen reduction catalysts for PEM fuel cells using polypyrrole and a chelating agent , 2011 .

[21]  Jean-Pol Dodelet,et al.  Fe-Based Catalysts for Oxygen Reduction in PEM Fuel Cells Pretreatment of the Carbon Support , 2004 .

[22]  Robert F. Savinell,et al.  High temperature proton exchange membranes based on polybenzimidazoles for fuel cells , 2009 .

[23]  K. Agbossou,et al.  Dynamic behavior of a PEM fuel cell stack for stationary applications , 2001 .

[24]  Edson A. Ticianelli,et al.  Localization of platinum in low catalyst loading electrodes to to attain high power densities in SPE fuel cells , 1988 .

[25]  Masayuki Nogami,et al.  Synthesis and characterization of anhydrous proton conducting inorganic–organic composite membranes for medium temperature proton exchange membrane fuel cells (PEMFCs) , 2010 .

[26]  Nadia El Kissi,et al.  Proton-conducting ionic liquid-based Proton Exchange Membrane Fuel Cell membranes: The key role of ionomer–ionic liquid interaction , 2010 .

[27]  Michael D. Guiver,et al.  Properties of SPEEK based PEMs for fuel cell application , 2003 .

[28]  Zhigang Shao,et al.  The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test , 2007 .

[29]  S. Srinivasan,et al.  Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects , 2001 .

[30]  Masayoshi Watanabe,et al.  Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells , 2010 .

[31]  Hiroyuki Uchida,et al.  Sulfonated poly(arylene ether sulfone ketone) multiblock copolymers with highly sulfonated block. Fuel cell performance. , 2010, The journal of physical chemistry. B.

[32]  Wei Li,et al.  Anhydrous elevated-temperature polymer electrolyte membranes based on ionic liquids , 2011 .

[33]  S. M. Javaid Zaidi Research Trends in Polymer Electrolyte Membranes for PEMFC , 2009 .

[34]  Keith Scott,et al.  Development of high-temperature PEMFC based on heteropolyacids and polybenzimidazole , 2010 .

[35]  Ram Devanathan,et al.  Recent developments in proton exchange membranes for fuel cells , 2008 .

[36]  Inmaculada Zamora,et al.  Influence of the rated power in the performance of different proton exchange membrane (PEM) fuel cells , 2010 .

[37]  Zhengkai Tu,et al.  Evaluation of 5 kW proton exchange membrane fuel cell stack operated at 95 °C under ambient pressure , 2013 .

[38]  Hubert A. Gasteiger,et al.  Dependence of PEM fuel cell performance on catalyst loading , 2004 .

[39]  W. Meyer,et al.  ANHYDROUS PROTON-CONDUCTING POLYMERS , 2003 .

[40]  E. Rafiee,et al.  Cesium hydrogen salt of heteropolyacids/Nafion nanocomposite membranes for proton exchange membrane , 2011 .

[41]  Gao Qing Lu,et al.  Solid acid membranes for high temperature (¿140° C) proton exchange membrane fuel cells , 2005 .

[42]  Pablo Cañizares,et al.  Study of the influence of the amount of PBI–H3PO4 in the catalytic layer of a high temperature PEMFC , 2010 .

[43]  Jingwei Hu,et al.  Degradation study on MEA in H3PO4/PBI high-temperature PEMFC life test , 2007 .

[44]  Ronghuan He,et al.  The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C , 2003 .

[45]  He Bai,et al.  Recent developments in fuel-processing and proton-exchange membranes for fuel cells , 2011 .

[46]  Bruno G. Pollet,et al.  Enhanced durability of a Pt/C electrocatalyst derived from Nafion-stabilised colloidal platinum nanoparticles , 2010 .

[47]  Hae-Seung Lee,et al.  Synthesis and characterization of poly(arylene ether sulfone)-b-polybenzimidazole copolymers for high temperature low humidity proton exchange membrane fuel cells , 2008 .

[48]  Werner Lehnert,et al.  Redistribution of Phosphoric Acid in Membrane Electrode Assemblies for High Temperature Polymer Electrolyte Fuel Cells , 2009 .

[49]  J. Scholta,et al.  Long‐Term Testing in Dynamic Mode of HT‐PEMFC H3PO4/PBI Celtec‐P Based Membrane Electrode Assemblies for Micro‐CHP Applications , 2010 .

[50]  Martin S. Miller,et al.  A review of polymer electrolyte membrane fuel cell stack testing , 2011 .

[51]  Werner Lehnert,et al.  Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly(2,5-benzimidazole) membranes with phosphoric acid impregnation via the catalyst layers , 2009 .

[52]  A. Vahidi,et al.  A review of the main parameters influencing long-term performance and durability of PEM fuel cells , 2008 .

[53]  D. Chu,et al.  Comparative studies of polymer electrolyte membrane fuel cell stack and single cell , 1999 .

[54]  Viktor Hacker,et al.  Experimental analysis of internal gas flow configurations for a polymer electrolyte membrane fuel cell stack , 2008 .

[55]  Gareth Hinds,et al.  What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[56]  J. P. Kopasz,et al.  The U.S. DOEs High Temperature Membrane Effort , 2009 .

[57]  Antonino S. Aricò,et al.  Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature , 2011 .

[58]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[59]  Yuyan Shao,et al.  Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges , 2007 .

[60]  Jing Ni,et al.  Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells , 2011 .

[61]  Manuel Maréchal,et al.  From polymer chemistry to membrane elaboration: A global approach of fuel cell polymeric electrolytes , 2006 .

[62]  Wei Liu,et al.  A proton exchange membrane fabricated from a chemically heterogeneous nonwoven with sandwich structure by the program-controlled co-electrospinning process. , 2012, Chemical communications.

[63]  Ki-Hyun Kim,et al.  Nafion/ZrSPP composite membrane for high temperature operation of proton exchange membrane fuel cells , 2006 .

[64]  Pablo Cañizares,et al.  Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC , 2007 .

[65]  Zhenglong Yang,et al.  Studies on sulfonic acid functionalized hollow silica spheres/Nafion® composite proton exchange membranes , 2009 .

[66]  Hsiu-Li Lin,et al.  Durability and stability test of proton exchange membrane fuel cells prepared from polybenzimidazole/poly(tetrafluoro ethylene) composite membrane , 2009 .

[67]  Gang Zhang,et al.  Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells , 2011 .

[68]  Zhenxing Liang,et al.  A novel cesium hydrogen sulfate–zeolite inorganic composite electrolyte membrane for polymer electrolyte membrane fuel cell application , 2009 .

[69]  B. Rambabu,et al.  Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell , 2010 .

[70]  S. Rowshanzamir,et al.  Review of the proton exchange membranes for fuel cell applications , 2010 .

[71]  Deborah J. Jones,et al.  Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells , 2003 .

[72]  Patric Jannasch,et al.  Polysulfones grafted with poly(vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state , 2008 .

[73]  Rui Chen,et al.  A review of performance degradation and failure modes for hydrogen-fuelled polymer electrolyte fuel cells , 2008 .

[74]  Dukjoon Kim,et al.  sPEEK/ZPMA composite proton exchange membrane for fuel cell application , 2011 .

[75]  Bruno G. Pollet,et al.  Gas Diffusion Media and their Degradation , 2012 .

[76]  Jean-Yves Sanchez,et al.  Polysulfone-based Ionomers for Fuel Cell Applications , 2009 .

[77]  Søren Knudsen Kær,et al.  Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks , 2008 .

[78]  Serdar Erkan,et al.  Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells , 2009 .

[79]  Jens Oluf Jensen,et al.  Crosslinking of polybenzimidazole membranes by divinylsulfone post‐treatment for high‐temperature proton exchange membrane fuel cell applications , 2011 .

[80]  Tae-Hyun Kim,et al.  Azide-assisted terminal crosslinking of ionomeric blocks: Effects on morphology and proton conductivity , 2012 .

[81]  Eva Novillo,et al.  Novel Approaches for the Integration of High Temperature PEM Fuel Cells Into Aircrafts , 2010 .

[82]  Keith Scott,et al.  Three Dimensional Model of a High Temperature PEMFC. Study of the Flow Field Effect on Performance , 2012 .

[83]  Ronghuan He,et al.  Preparation and operation of gas diffusion electrodes for high-temperature proton exchange membrane fuel cells , 2007 .

[84]  C. Bordons,et al.  Development and experimental validation of a PEM fuel cell dynamic model , 2007 .

[85]  Brian C. Benicewicz,et al.  Synthesis and Properties of Segmented Block Copolymers of Functionalised Polybenzimidazoles for High‐Temperature PEM Fuel Cells , 2011 .

[86]  Hyuk Chang,et al.  Cross-Linked Benzoxazine–Benzimidazole Copolymer Electrolyte Membranes for Fuel Cells at Elevated Temperature , 2012 .

[87]  Christoph Hartnig,et al.  On a new degradation mode for high-temperature polymer electrolyte fuel cells: How bipolar plate degradation affects cell performance , 2011 .

[88]  Bruno G. Pollet,et al.  Polymer Electrolyte Membrane Fuel Cell (PEMFC) Flow Field Plate: Design, Materials and Characterisation , 2010 .

[89]  Zhenglong Yang,et al.  Towards high water retention of proton exchange membranes at elevated temperature via hollow nanospheres , 2010 .

[90]  U. Wagner,et al.  Experimental analysis of water management in a self-humidifying polymer electrolyte fuel cell stack , 2004 .

[91]  Hyoung-Juhn Kim,et al.  Sulfonated poly(ether sulfone)/sulfonated polybenzimidazole blend membrane for fuel cell applications , 2010 .

[92]  James M. Fenton,et al.  Development and demonstration of a higher temperature PEM fuel cell stack , 2005 .

[93]  Supaporn Therdthianwong,et al.  Cathode catalyst layer design for proton exchange membrane fuel cells , 2012 .

[94]  D. Curtin,et al.  Nafion® perfluorinated membranes in fuel cells , 2004 .

[95]  Anne-Claire Dupuis,et al.  Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques , 2011 .

[96]  Raymond Puffer,et al.  Recent Advances in High Temperature Proton Exchange Membrane Fuel Cell Manufacturing , 2009 .

[97]  J. Kerres Development of ionomer membranes for fuel cells , 2001 .

[98]  Bruno G. Pollet,et al.  The effect of materials on proton exchange membrane fuel cell electrode performance , 2011 .

[99]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[100]  Wei Chen,et al.  Nafion®-titania nanocomposite proton exchange membranes , 2011 .

[101]  Jens Oluf Jensen,et al.  Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes , 2010 .

[102]  Joannis K. Kallitsis,et al.  Polymer electrolyte membranes for high-temperature fuel cells based on aromatic polyethers bearing pyridine units , 2009 .

[103]  Xia Wang,et al.  Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application , 2013 .

[104]  Jérôme Dillet,et al.  Characterization of polymer electrolyte Nafion membranes: Influence of temperature, heat treatment and drying protocol on sorption and transport properties , 2012 .

[105]  M. Guiver,et al.  Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs) , 2011 .

[106]  Deborah J. Jones,et al.  Synthesis and characterisation of novel fluorinated polymers bearing pendant imidazole groups and blend membranes: New materials for PEMFC operating at low relative humidity , 2011 .

[107]  O. Barbera,et al.  Effect of operative conditions on a PEFC stack performance , 2008 .

[108]  Makoto Adachi,et al.  Properties of Nafion® NR-211 membranes for PEMFCs , 2010 .

[109]  B. Améduri,et al.  Functional fluoropolymers for fuel cell membranes , 2005 .

[110]  Masayuki Nogami,et al.  Novel hybrid proton exchange membrane electrolytes for medium temperature non-humidified fuel cells , 2011 .

[111]  Sossina M. Haile,et al.  Solid acids as fuel cell electrolytes , 2001, Nature.

[112]  K. Sanui,et al.  Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers , 2000 .

[113]  Masahiro Watanabe,et al.  Recent Progress in Proton Conducting Membranes for PEFCs , 2005 .

[114]  Paola Costamagna,et al.  Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 °C , 2002 .

[115]  Nicola Zuliani,et al.  Effect of flow field design on performances of high temperature PEM fuel cells: Experimental analysi , 2011 .

[116]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .

[117]  Pan Mu,et al.  Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells , 2011 .

[118]  Paola Costamagna,et al.  Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells , 2001 .

[119]  Li Sheng,et al.  Synthesis and properties of novel sulfonated polybenzimidazoles from disodium 4,6-bis(4-carboxyphenoxy)benzene-1,3-disulfonate , 2011 .

[121]  Enrico Drioli,et al.  Preparation and characterization of new non-fluorinated polymeric and composite membranes for PEMFCs , 2010 .

[122]  Emanuel Peled,et al.  PTFE-Based Solid Polymer Electrolyte Membrane for High-Temperature Fuel Cell Applications , 2007 .

[123]  Masahiro Watanabe,et al.  Synthesis and properties of a polyimide containing pendant sulfophenoxypropoxy groups , 2007 .

[124]  Brian C. Benicewicz,et al.  Sulfonated Polybenzimidazoles for High Temperature PEM Fuel Cells , 2010 .

[125]  A. Heinzel,et al.  Injection moulded low cost bipolar plates for PEM fuel cells , 2004 .

[126]  Stephen J. Paddison,et al.  Short-side-chain proton conducting perfluorosulfonic acid ionomers: Why they perform better in PEM fuel cells , 2008 .

[127]  B. Smitha,et al.  Solid polymer electrolyte membranes for fuel cell applications¿a review , 2005 .

[128]  Hiroyuki Uchida,et al.  Proton-conductive aromatic ionomers containing highly sulfonated blocks for high-temperature-operable fuel cells. , 2010, Angewandte Chemie.

[129]  Liping Zheng,et al.  Binary oxide-doped Pt/RuO2–SiOx/C catalyst with high performance and self-humidification capability: The promotion of ruthenium oxide , 2012 .

[130]  Sophie Didierjean,et al.  Design of an 80 kWe PEM fuel cell system: Scale up effect investigation , 2008 .

[131]  B. Pollet,et al.  Support materials for PEMFC and DMFC electrocatalysts—A review , 2012 .

[132]  Masahiro Watanabe,et al.  Emerging membrane materials for high temperature polymer electrolyte fuel cells: durable hydrocarbon ionomers , 2006 .

[133]  K. S. Dhathathreyan,et al.  Development of polymer electrolyte membrane fuel cell stack , 1999 .

[134]  Hsiu-Li Lin,et al.  Poly(benzimidazole)-epoxide crosslink membranes for high temperature proton exchange membrane fuel cells , 2012 .

[135]  Chang-Soo Kim,et al.  Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes , 1998 .

[136]  P. Cañizares,et al.  Influence of the Teflon loading in the gas diffusion layer of PBI-based PEM fuel cells , 2008 .

[137]  Ronghuan He,et al.  Integration of high temperature PEM fuel cells with a methanol reformer , 2005 .

[138]  Martin Hein,et al.  Partially Fluorinated Aarylene Polyethers and their Ternary Blends with PBI and H3PO4. Part II. Characterisation and Fuel Cell Tests of the Ternary Membranes , 2008 .

[139]  Naba K Dutta,et al.  Interfacial interactions in aprotic ionic liquid based protonic membrane and its correlation with high temperature conductivity and thermal properties. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[140]  Detlef Stolten,et al.  Membranen für Polymerelektrolyt‐Brennstoffzellen , 2003 .

[141]  B. P. Tripathi,et al.  Organic―inorganic nanocomposite polymer electrolyte membranes for fuel cell applications , 2011 .

[142]  Aimy Bazylak,et al.  Liquid water visualization in PEM fuel cells: A review , 2009 .

[143]  Suk Woo Nam,et al.  Demonstration of a 20 W class high-temperature polymer electrolyte fuel cell stack with novel fabrication of a membrane electrode assembly , 2011 .

[144]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[145]  Keith Scott,et al.  Phosphoric acid‐doped electrodes for a PBI polymer membrane fuel cell , 2011 .

[146]  C. Laberty‐Robert,et al.  Design and properties of functional hybrid organic-inorganic membranes for fuel cells. , 2011, Chemical Society reviews.

[147]  David P. Wilkinson,et al.  High temperature PEM fuel cells , 2006 .

[148]  Masaru Miyayama,et al.  Proton conducting membranes composed of sulfonated poly(etheretherketone) and zirconium phosphate nanosheets for fuel cell applications , 2010 .

[149]  Jingwei Hu,et al.  Performance degradation studies on PBI/H3PO4 high temperature PEMFC and one-dimensional numerical analysis , 2006 .

[150]  Masayuki Nogami,et al.  Anhydrous Proton Conducting Hybrid Membrane Electrolytes for High Temperature (>100°C) Proton Exchange Membrane Fuel Cells , 2011 .

[151]  Joachim Scholta,et al.  Externally cooled high temperature polymer electrolyte membrane fuel cell stack , 2009 .

[152]  M. Pina,et al.  Conductivity in zeolite-polymer composite membranes for PEMFCs , 2007 .

[153]  Nora Gourdoupi,et al.  New proton conducting polymer blends and their fuel cell performance , 2010 .

[154]  T. Yasuda,et al.  Substituents effect on the properties of sulfonated polyimide copolymers , 2008 .

[155]  Nam Hoon Kim,et al.  Polymer membranes for high temperature proton exchange membrane fuel cell : recent advances and challenges , 2011 .

[156]  Viral S. Mehta,et al.  Review and analysis of PEM fuel cell design and manufacturing , 2003 .

[157]  Jun Shen,et al.  A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies , 2008 .

[158]  Arnaldo Visintin,et al.  Advances in the development of a hydrogen/oxygen PEM fuel cell stack , 2008 .

[159]  Jiujun Zhang,et al.  A review of accelerated stress tests of MEA durability in PEM fuel cells , 2009 .

[160]  Xianguo Li,et al.  Review of bipolar plates in PEM fuel cells: Flow-field designs , 2005 .

[161]  Hamdani Saidi,et al.  Comparative investigations of radiation‐grafted proton‐exchange membranes prepared using single‐step and conventional two‐step radiation‐induced grafting methods , 2011 .

[162]  Hideto Matsuyama,et al.  Effect of addition of organic microspheres on proton conductivity property of sulfonated poly(arylene ether sulfone) membrane , 2008 .

[163]  Monica Pica,et al.  Nafion–Zirconium Phosphate Nanocomposite Membranes with High Filler Loadings: Conductivity and Mechanical Properties , 2008 .

[164]  W. Ho,et al.  Synthesis and characterization of new sulfonated polyimides as proton-exchange membranes for fuel cells , 2006 .

[165]  Brian C. Benicewicz,et al.  Durability Studies of PBI‐based High Temperature PEMFCs , 2008 .

[166]  Natarajan Rajalakshmi,et al.  Thermal and electrical energy management in a PEMFC stack – An analytical approach , 2008 .

[167]  Hassan Namazi,et al.  Improving the proton conductivity and water uptake of polybenzimidazole-based proton exchange nanoco , 2011 .

[168]  P. Haldar,et al.  Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions , 2010 .

[169]  Yu Jun,et al.  Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells , 2011 .

[170]  C. Wieser,et al.  Novel Polymer Electrolyte Membranes for Automotive Applications – Requirements and Benefits , 2004 .