Liquid-Gas Phase Transitions Studied by Multibaric-Multithermal Monte Carlo Simulations

We investigate the liquid–gas phase transition of a Lennard-Jones 12-6 potential system by the multibaric–multithermal Monte Carlo algorithm. The advantage of this method is that one can sample configurational space both in the gas phase and in the liquid phase from only one simulation run. Our liquid–gas coexistence data agree well with those obtained previously by other methods. We also show that this method is efficient in investigation of the transition state, which is the saddle point of a free energy surface.

[1]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[2]  Yuko Okamoto,et al.  Molecular dynamics simulations in the multibaric–multithermal ensemble , 2004 .

[3]  M. Weinberger,et al.  ON THE LIQUID–VAPOR COEXISTENCE CURVE OF XENON IN THE REGION OF THE CRITICAL TEMPERATURE , 1952 .

[4]  Melville S. Green,et al.  REVISED AND EXTENDED SCALING FOR COEXISTING DENSITIES OF SF6 , 1977 .

[5]  Hisashi Okumura,et al.  Liquid–vapor coexistence curves of several interatomic model potentials , 2000 .

[6]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[7]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[8]  Yuko Okamoto,et al.  Monte Carlo simulations in generalized isobaric-isothermal ensembles. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Michael Creutz,et al.  Microcanonical Monte Carlo Simulation , 1983 .

[10]  Jan V. Sengers,et al.  Thermodynamic Behavior of Fluids Near the Critical Point , 1986 .

[11]  E. A. Guggenheim The Principle of Corresponding States , 1945 .

[12]  Yuji Sugita,et al.  Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape , 2000, cond-mat/0009119.

[13]  A. Kidera,et al.  Multicanonical Ensemble Generated by Molecular Dynamics Simulation for Enhanced Conformational Sampling of Peptides , 1997 .

[14]  Y. Sugita,et al.  Replica-exchange multicanonical and multicanonical replica-exchange Monte Carlo simulations of peptides. I. Formulation and benchmark test , 2003 .

[15]  Berg,et al.  New approach to spin-glass simulations. , 1992, Physical review letters.

[16]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[17]  Jadran Vrabec,et al.  Vapour liquid equilibria of the Lennard-Jones fluid from the NpT plus test particle method , 1992 .

[18]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[19]  H. Okumura,et al.  Monte Carlo simulations in multibaric–multithermal ensemble , 2004 .

[20]  P Heller,et al.  Experimental investigations of critical phenomena , 1967 .

[21]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[22]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[23]  Yuko Okamoto,et al.  The Generalized-Ensemble Approach for Protein Folding Simulations , 1999 .

[24]  G. W. Swift,et al.  Effect of the Quasiparticle Mean Free Path on Poiseuille Flow in Normal Liquid 3He , 1980 .

[25]  Ulrich H E Hansmann,et al.  Global optimization by energy landscape paving. , 2002, Physical review letters.

[26]  I. R. Mcdonald,et al.  NpT-ensemble Monte Carlo calculations for binary liquid mixtures , 2002 .

[27]  M. Fisher Correlation Functions and the Critical Region of Simple Fluids , 1964 .

[28]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[29]  Jeffrey J. Potoff,et al.  Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture , 1998 .

[30]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[31]  J. Caillol,et al.  Critical-point of the Lennard-Jones fluid: A finite-size scaling study , 1998 .

[32]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[33]  Y. Okamoto,et al.  Thermodynamics of Helix-Coil Transitions Studied by Multicanonical Algorithms , 1995, chem-ph/9505006.

[34]  Y. Okamoto,et al.  Molecular dynamics, Langevin, and hybrid Monte Carlo simulations in multicanonical ensemble , 1996, physics/9710018.

[35]  Hisashi Okumura,et al.  Reliable Determination of the Liquid-Vapor Critical Point by the NVT Plus Test Particle Method. , 2001 .

[36]  Bernd A. Berg,et al.  Generalized ensemble simulations for complex systems , 2001, cond-mat/0110521.

[37]  A Mitsutake,et al.  Generalized-ensemble algorithms for molecular simulations of biopolymers. , 2000, Biopolymers.

[38]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[39]  Berend Smit,et al.  Monte Carlo Simulations in Various Ensembles , 2002 .