NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow

We explore the use of NURBS-based immersed fluid–structure interaction algorithms to model the dynamics and rheology of red blood cells (RBCs) and nucleated cells. Prime examples of cells with nucleus that are relevant to this study are white blood cells (WBCs) and circulating tumor cells (CTCs). In this work, RBCs are modeled as thin solid membranes called capsules. To model cells with nucleus we introduce the concept of compound capsule which explicitly takes into account the nucleus as a bulky deformable solid. Our results indicate that to reproduce the behavior of RBCs in shear and parabolic flows, it is crucial to accurately solve the mass conservation equation near the fluid–solid interface. We show results of hyperelastic capsules and compound capsules in two- and three-dimensional settings. Finally, taking advantage of the geometric flexibility of our method, we simulate how a CTC passes through a narrowing. This is a feature of CTCs that has recently triggered excitement in the experimental community.

[1]  Robin Fåhræus,et al.  THE VISCOSITY OF THE BLOOD IN NARROW CAPILLARY TUBES , 1931 .

[2]  R. Skalak,et al.  Strain energy function of red blood cell membranes. , 1973, Biophysical journal.

[3]  Petia M. Vlahovska,et al.  Vesicles in Poiseuille flow. , 2008, Physical review letters.

[4]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[5]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[6]  J. McWhirter,et al.  Deformation and clustering of red blood cells in microcapillary flows , 2011 .

[7]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[8]  Victor Steinberg,et al.  Fluid vesicles in flow. , 2013, Advances in colloid and interface science.

[9]  O. Baskurt HEMORHEOLOGY AND HEMODYNAMICS , 2011 .

[10]  Isabelle Cantat,et al.  Lift Force and Dynamical Unbinding of Adhering Vesicles under Shear Flow , 1999 .

[11]  Oguz K. Baskurt,et al.  Handbook of hemorheology and hemodynamics , 2007 .

[12]  H. Shum,et al.  Capillary micromechanics for core-shell particles. , 2014, Soft matter.

[13]  R. Whitmore Hemorheology and hemodynamics , 1963 .

[14]  R. Fåhraeus THE SUSPENSION STABILITY OF THE BLOOD , 1929 .

[15]  C. Pozrikidis,et al.  Modeling and Simulation of Capsules and Biological Cells , 2003 .

[16]  Yongjie Zhang,et al.  A hybrid variational‐collocation immersed method for fluid‐structure interaction using unstructured T‐splines , 2016 .

[17]  A. Krogh The Anatomy and Physiology of Capillaries , 2010 .

[18]  Hector Gomez,et al.  Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff-Love shells , 2017, Comput. Aided Des..

[19]  P. Koumoutsakos,et al.  The Fluid Mechanics of Cancer and Its Therapy , 2013 .

[20]  Gerhard Gompper,et al.  Deformation and dynamics of red blood cells in flow through cylindrical microchannels. , 2014, Soft matter.

[21]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[22]  Yuri Bazilevs,et al.  Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.

[23]  Victor M. Calo,et al.  Phase Field Modeling Using PetIGA , 2013, ICCS.

[24]  Yi Sui,et al.  A hybrid method to study flow-induced deformation of three-dimensional capsules , 2008, J. Comput. Phys..

[25]  Lisandro Dalcin,et al.  PetIGA: High-Performance Isogeometric Analysis , 2013, ArXiv.

[26]  Matthew G. Knepley,et al.  Composing Scalable Nonlinear Algebraic Solvers , 2015, SIAM Rev..

[27]  P. Olla SIMPLIFIED MODEL FOR RED CELL DYNAMICS IN SMALL BLOOD VESSELS , 1998, chao-dyn/9805007.

[28]  Nicole K Henderson-Maclennan,et al.  Deformability-based cell classification and enrichment using inertial microfluidics. , 2011, Lab on a chip.

[29]  Long He,et al.  Deformation of spherical compound capsules in simple shear flow , 2015, Journal of Fluid Mechanics.

[30]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[31]  Himanish Basu,et al.  Tank treading of optically trapped red blood cells in shear flow. , 2011, Biophysical journal.

[32]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[33]  H Schmid-Schönbein,et al.  The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. , 1978, Science.

[34]  Victor M. Calo,et al.  Isogeometric Analysis of Hyperelastic Materials Using PetIGA , 2013, ICCS.

[35]  Laura De Lorenzis,et al.  The variational collocation method , 2016 .

[36]  Jongyoon Han,et al.  Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics , 2015, Nature Protocols.

[37]  Petia M. Vlahovska,et al.  Dynamics of a compound vesicle in shear flow. , 2011, Physical review letters.

[38]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[39]  J. P. Paul,et al.  Biomechanics , 1966 .

[40]  Alessandro Reali,et al.  Isogeometric collocation using analysis-suitable T-splines of arbitrary degree , 2016 .

[41]  Michael C. H. Wu,et al.  Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials , 2015 .

[42]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[43]  Gerhard Gompper,et al.  Margination of white blood cells in microcapillary flow. , 2012, Physical review letters.

[44]  George Biros,et al.  A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows , 2009, J. Comput. Phys..

[45]  Jonathan B. Freund,et al.  Numerical Simulation of Flowing Blood Cells , 2014 .

[46]  K. Toth,et al.  Plasma viscosity: a forgotten variable. , 2008, Clinical hemorheology and microcirculation.

[47]  Yaling Liu,et al.  Rheology of red blood cell aggregation by computer simulation , 2006, J. Comput. Phys..

[48]  Lucy T. Zhang,et al.  Coupling of Navier–Stokes equations with protein molecular dynamics and its application to hemodynamics , 2004 .

[49]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[50]  Prosenjit Bagchi,et al.  Mesoscale simulation of blood flow in small vessels. , 2007, Biophysical journal.

[51]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[52]  David Farrell,et al.  Immersed finite element method and its applications to biological systems. , 2006, Computer methods in applied mechanics and engineering.

[53]  R. Wells,et al.  Fluid Drop-Like Transition of Erythrocytes under Shear , 1969, Science.

[54]  Peter Kuhn,et al.  A physical sciences network characterization of circulating tumor cell aggregate transport. , 2015, American journal of physiology. Cell physiology.

[55]  I. Babuska Error-bounds for finite element method , 1971 .

[56]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[57]  C. Bona-Casas,et al.  A NURBS-based immersed methodology for fluid–structure interaction , 2015 .

[58]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[59]  Jie Xu,et al.  The effects of 3D channel geometry on CTC passing pressure--towards deformability-based cancer cell separation. , 2014, Lab on a chip.

[60]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[61]  Jens Harting,et al.  Complex Dynamics of a Bilamellar Vesicle as a Simple Model for Leukocytes , 2012, 1209.5304.

[62]  Saroja Ramanujan,et al.  Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities , 1998, Journal of Fluid Mechanics.

[63]  Prosenjit Bagchi,et al.  Dynamics of nonspherical capsules in shear flow. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  George Biros,et al.  A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D , 2009, J. Comput. Phys..

[65]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[66]  van Eh Harald Brummelen,et al.  Error-amplification analysis of subiteration-preconditioned GMRES for fluid-structure interaction , 2006 .

[67]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[68]  F. C. Macintosh,et al.  Flow behaviour of erythrocytes - I. Rotation and deformation in dilute suspensions , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[69]  C. Lim,et al.  Isolation and retrieval of circulating tumor cells using centrifugal forces , 2013, Scientific Reports.

[70]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[71]  John J. R. Williams,et al.  Application of the additive Schwarz method to large scale Poisson problems , 2004 .

[72]  A. Pries,et al.  Microvascular blood viscosity in vivo and the endothelial surface layer. , 2005, American journal of physiology. Heart and circulatory physiology.

[73]  Onkar Sahni,et al.  Variational Multiscale Analysis: The Fine-Scale Green's Function for Stochastic Partial Differential Equations , 2013, SIAM/ASA J. Uncertain. Quantification.

[74]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[75]  George Em Karniadakis,et al.  Blood flow in small tubes: quantifying the transition to the non-continuum regime , 2013, Journal of Fluid Mechanics.

[76]  Jens Harting,et al.  Two-dimensional vesicle dynamics under shear flow: effect of confinement. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Hector Gomez,et al.  Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..

[78]  Robin Fåhrœus.,et al.  The Suspension‐stability of the Blood. , 2009 .

[79]  Gwennou Coupier,et al.  Noninertial lateral migration of vesicles in bounded Poiseuille flow , 2008, 0803.3153.

[80]  Alessandro Reali,et al.  Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .