Towards a Field Model of Prequantum Reality

We start with an extended review of classical field approaches to quantum mechanics (QM). In particular, we present Einstein’s dream to exclude particles totally from quantum physics. We also describe the evolution of Einstein’s views: from the invention of the light quantum to a purely classical field picture of quantum reality. Then we present briefly a new field-type model, prequantum classical statistical field theory (PCSFT), which was recently developed in a series of the author’s papers. PCSFT reproduces basic predictions of QM, including correlations for entangled systems. Finally, we present a mathematical model which justifies the usage of Gaussian random fields in PCSFT. Such fields provide an approximative description of extremely dense trains of wave pulses. Possible physical sources of such pulses are discussed.

[1]  Timothy H. Boyer,et al.  A Brief Survey of Stochastic Electrodynamics , 1980 .

[2]  A. Einstein,et al.  The Evolution of Physics: The Growth of Ideas from the Early Concepts to Relativity and Quanta , 1938 .

[3]  H. F. Hofmann Quantum Noise and Spontaneous Emission in Semiconductor Laser Devices , 1999 .

[4]  Andrei Khrennikov Pairwise correlations in a three-partite quantum system from a prequantum random field , 2010 .

[5]  Andrei Khrennikov,et al.  An analogue of the Heisenberg uncertainty relation in prequantum classical field theory , 2009, 0912.1565.

[6]  Andrei Khrennikov,et al.  Subquantum detection theory—SDT , 2008 .

[7]  Andrei Khrennikov,et al.  A pre-quantum classical statistical model with infinite-dimensional phase space , 2005, quant-ph/0505228.

[8]  Alfred Landé,et al.  New Foundations of Quantum Mechanics , 1966 .

[9]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[10]  Leslie E Ballentine,et al.  The statistical interpretation of quantum mechanics , 1970 .

[11]  Paul Arthur Schilpp Albert Einstein als Philosoph und Naturforscher , 1979 .

[12]  N. Mukunda The story of the photon , 2000 .

[13]  F. Catara,et al.  PARTICLE-HOLE EXCITATIONS WITH A COMPLETE SINGLE-PARTICLE BASIS. I. THE POINT SPECTRUM. , 1966 .

[14]  L. Ballentine,et al.  Quantum mechanics , 1989 .

[15]  C. Helstrom Quantum detection theory , 1971 .

[16]  W. Louisell Quantum Statistical Properties of Radiation , 1973 .

[17]  D. Cole Simulation Results Related to Stochastic Electrodynamics , 2006 .

[18]  Luis de la Peña,et al.  The quantum dice : an introduction to stochastic electrodynamics , 1996 .

[19]  G. Mie Grundlagen einer Theorie der Materie , 1912 .

[20]  A. Khrennikov Prequantum classical statistical field theory: Time scale of fluctuations , 2007 .

[21]  Jagdish Mehra,et al.  The Interpretation of Quantum Mechanics , 2001 .

[22]  Arkady Plotnitsky,et al.  Epistemology and Probability: Bohr, Heisenberg, Schrödinger, and the Nature of Quantum-Theoretical Thinking , 2009 .

[23]  Marlan O. Scully,et al.  THE PHOTOELECTRIC EFFECT WITHOUT PHOTONS , 1968 .

[24]  SU(3)-breaking effects in kaon and hyperon semileptonic decays from lattice QCD , 2004, hep-lat/0411016.

[25]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[26]  Albert Einstein,et al.  The collected papers of Albert Einstein , 1987 .

[27]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[28]  A. Barut,et al.  Foundations of radiation theory and quantum electrodynamics , 1980 .

[29]  N. Bohr,et al.  Über die Quantentheorie der Strahlung , 1924 .

[30]  E. Richard Cohen,et al.  Foundations of Quantum Theory , 1955 .