Structural studies of copper sulfide films: effect of ambient atmosphere
暂无分享,去创建一个
Masakazu Aono | Kazuhiro Yamamoto | Tsuyoshi Hasegawa | Kazuya Terabe | T. Hasegawa | M. Aono | K. Terabe | M. Kundu | Manisha Kundu | Kazuhiro Yamamoto
[1] T. Hasegawa,et al. Effect of Ion Diffusion on Switching Voltage of Solid-Electrolyte Nanometer Switch , 2005 .
[2] Shih-Hsuan Yang,et al. Spectroscopic characterization of the copper sulphide core/shell nanowires , 2001 .
[3] M. Tomita,et al. Analysis of Tarnish Films on Copper Exposed in Hot Spring Area , 2002 .
[4] J. Bastidas,et al. X-Ray Photoelectron Spectroscopy Study on the Chemical Composition of Copper Tarnish Products Formed at Low Humidities , 2001 .
[5] José A. Rodriguez,et al. Interaction of Sulfur with Bimetallic Surfaces: Coadsorption of Sulfur and Noble Metals on Ru(001) , 1994 .
[6] Metodija Najdoski,et al. Optical and Electrical Properties of Copper Sulfide Films of Variable Composition , 1995 .
[7] Lawrence H. Bennett,et al. Binary alloy phase diagrams , 1986 .
[8] G. Sparrow,et al. Roxbyite, a New Copper Sulphide Mineral from the Olympic Dam Deposit, Roxby Downs, South Australia , 1988, Mineralogical Magazine.
[9] Shichio Kawai,et al. Electrical Conduction and Phase Transition of Copper Sulfides , 1973 .
[10] A. Walcarius,et al. Immobilization of iodide on copper(I) sulfide minerals. , 2003, Journal of environmental radioactivity.
[11] P. Marcus,et al. X‐ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides , 1992 .
[12] A. Galtayries,et al. XPS and ISS studies on the interaction of H2S with polycrystalline Cu, Cu2O and CuO surfaces , 1995 .
[13] W. A. Dench,et al. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids , 1979 .
[14] A. Galdikas,et al. Properties of CuxS thin film based structures: influence on the sensitivity to ammonia at room temperatures , 2001 .
[15] John R. Arthur. Molecular beam epitaxy , 2002 .
[16] D. Griffis,et al. Quantitative comparison of direct and derivative AES with XPS of metal sulfides , 1982 .
[17] I. Kartio,et al. XPS study of clean metal sulfide surfaces , 1994 .
[18] K. Laajalehto,et al. 5-Methyl-2-mercaptobenzoxazole Adsorbed onto Chalcocite (Cu2S): An XPS and X-AES Study , 1995 .
[19] R. Pattrick,et al. The structure of amorphous copper sulfide precipitates: An X-ray absorption study , 1997 .
[20] R. R. Sowell,et al. High absorptivity solar absorbing coatings , 1974 .
[21] A. Rossi,et al. Quantitative X‐ray photoelectron spectroscopy study of enargite (Cu3AsS4) surface , 2001 .
[22] M. Lagally,et al. Scanning tunneling microscopy studies of structural disorder and steps on Si surfaces , 1989 .
[23] K. Terabe,et al. Quantized conductance atomic switch , 2005, Nature.
[24] M. Dachraoui,et al. Improvement of cuprous sulphide stoichiometry by electrochemical and chemical methods , 1987 .
[25] J. A. Taylor,et al. X-ray photoelectron and Auger spectroscopic studies of Cu2S and CuS , 1986 .
[26] F. Jellinek,et al. The valence of copper in sulphides and selenides: An X-ray photoelectron spectroscopy study , 1980 .
[27] R. Thangaraj,et al. Optical properties and solar selectivity of flash-evaporated copper sulphide films , 1986 .
[28] T. Hasegawa,et al. Nanometer-scale switches using copper sulfide , 2003 .
[29] I. Nakai,et al. X-ray photoelectron spectroscopic study of copper minerals , 1978 .
[30] D. S. Sivia,et al. Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.