A note on the switching adiabatic theorem

We derive a nearly optimal upper bound on the running time in the adiabatic theorem for a switching family of Hamiltonians. We assume the switching Hamiltonian is in the Gevrey class $G^\alpha$ as a function of time, and we show that the error in adiabatic approximation remains small for running times of order $g^{-2}\,|\ln\,g\,|^{6\alpha}$. Here $g$ denotes the minimal spectral gap between the eigenvalue(s) of interest and the rest of the spectrum of the instantaneous Hamiltonian.

[1]  V. Jaksic,et al.  EXPONENTIAL APPROACH TO THE ADIABATIC LIMIT AND THE LANDAU-ZENER FORMULA , 1992 .

[2]  Adiabatic charge transport and the Kubo formula for Landau‐type Hamiltonians , 2003, math-ph/0304009.

[3]  G. Hagedorn,et al.  Elementary Exponential Error Estimates for the Adiabatic Approximation , 2002 .

[4]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[5]  M. Ruskai,et al.  Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.

[6]  André Martinez,et al.  Precise exponential estimates in adiabatic theory , 1994 .

[7]  A. Joye Proof of the Landau–Zener formula , 1994 .

[8]  G. Hagedorn Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gaps , 1991 .

[9]  Ruedi Seiler,et al.  Adiabatic theorems and applications to the quantum hall effect , 1987 .

[10]  The Adiabatic Theorem for SwitchingProcesses with Gevrey Class Regularity , 2007 .

[11]  Daniel A. Lidar,et al.  Adiabatic approximation with exponential accuracy for many-body systems and quantum computation , 2008, 0808.2697.

[12]  Alexander Elgart,et al.  The Adiabatic Theorem of Quantum Mechanics , 1998 .

[13]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[14]  G. Nenciu,et al.  Linear adiabatic theory. Exponential estimates , 1993 .

[15]  A. Elgart,et al.  On the efficiency of Hamiltonian-based quantum computation for low-rank matrices , 2010, 1004.4911.

[16]  S. Nakamura,et al.  A Note on Exponential Estimates in Adiabatic Theory , 2005 .

[17]  Maurice Gevrey,et al.  Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire , 1918 .

[18]  J. E. Avron,et al.  Adiabatic Theorem without a Gap Condition , 1999 .

[19]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[20]  C. Pfister,et al.  Exponentially small adiabatic invariant for the Schrödinger equation , 1991 .

[21]  G. Nenciu On the adiabatic theorem of quantum mechanics , 1980 .

[22]  A. Lenard,et al.  Adiabatic invariance to all orders , 1959 .

[23]  C. Pfister,et al.  Superadiabatic evolution and adiabatic transition probability between two nondegenerate levels isolated in the spectrum , 1993 .