A note on the switching adiabatic theorem
暂无分享,去创建一个
[1] V. Jaksic,et al. EXPONENTIAL APPROACH TO THE ADIABATIC LIMIT AND THE LANDAU-ZENER FORMULA , 1992 .
[2] Adiabatic charge transport and the Kubo formula for Landau‐type Hamiltonians , 2003, math-ph/0304009.
[3] G. Hagedorn,et al. Elementary Exponential Error Estimates for the Adiabatic Approximation , 2002 .
[4] Lov K. Grover. A fast quantum mechanical algorithm for database search , 1996, STOC '96.
[5] M. Ruskai,et al. Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.
[6] André Martinez,et al. Precise exponential estimates in adiabatic theory , 1994 .
[7] A. Joye. Proof of the Landau–Zener formula , 1994 .
[8] G. Hagedorn. Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gaps , 1991 .
[9] Ruedi Seiler,et al. Adiabatic theorems and applications to the quantum hall effect , 1987 .
[10] The Adiabatic Theorem for SwitchingProcesses with Gevrey Class Regularity , 2007 .
[11] Daniel A. Lidar,et al. Adiabatic approximation with exponential accuracy for many-body systems and quantum computation , 2008, 0808.2697.
[12] Alexander Elgart,et al. The Adiabatic Theorem of Quantum Mechanics , 1998 .
[13] Seth Lloyd,et al. Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[14] G. Nenciu,et al. Linear adiabatic theory. Exponential estimates , 1993 .
[15] A. Elgart,et al. On the efficiency of Hamiltonian-based quantum computation for low-rank matrices , 2010, 1004.4911.
[16] S. Nakamura,et al. A Note on Exponential Estimates in Adiabatic Theory , 2005 .
[17] Maurice Gevrey,et al. Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire , 1918 .
[18] J. E. Avron,et al. Adiabatic Theorem without a Gap Condition , 1999 .
[19] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[20] C. Pfister,et al. Exponentially small adiabatic invariant for the Schrödinger equation , 1991 .
[21] G. Nenciu. On the adiabatic theorem of quantum mechanics , 1980 .
[22] A. Lenard,et al. Adiabatic invariance to all orders , 1959 .
[23] C. Pfister,et al. Superadiabatic evolution and adiabatic transition probability between two nondegenerate levels isolated in the spectrum , 1993 .