Comparison of kinetic and thermodynamic parameters of single crystal pentaerythritol tetranitrate using atomic force microscopy and thermogravimetric analysis: Implications on coarsening mechanisms

Pentaerythritol tetranitrate (PETN) is a secondary energetic material generally used in initiators for industrial and government applications. Changes in the morphology and surface area of aging powders have been observed during aging, which can modify the initiability and performance. Here work is presented using two different techniques to determine kinetic and thermodynamic parameters of single crystal PETN. Atomic force microscopy is used for low-temperature analysis, while thermogravimetric analysis is used at higher temperatures. A mechanism is proposed to expand the understanding of coarsening observed in real world PETN.

[1]  A. Maiti,et al.  Evaporation from the (1 1 0) surface of PETN , 2008 .

[2]  W. Proud,et al.  Relationship between the morphology of granular cyclotrimethylene-trinitramine and its shock sensitivity , 2007 .

[3]  H. Teng,et al.  Surface behavior of gypsum during dissolution , 2007 .

[4]  B. L. Weeks,et al.  Effect of Impurity Doping on the Morphology of Pentaerythritol Tetranitrate Crystals , 2007 .

[5]  R. Gee,et al.  Molecular modeling of diffusion on a crystalline pentaerythritol tetranitrate surface , 2007 .

[6]  W. Rathmann,et al.  Cost comparison analysis: pentaerythrithyl tetranitrate (PETN) and isosorbide dinitrate (ISDN) prescribed to diabetic patients in primary care practices in Germany. , 2007, International journal of clinical pharmacology and therapeutics.

[7]  A. Burnham,et al.  Quantitative thermodynamic analysis of sublimation rates using an atomic force microscope. , 2007, The journal of physical chemistry. B.

[8]  Knudsen diffusion through thin fibrous films , 2007 .

[9]  Elizabeth Edmonds,et al.  Development of in-situ surface area analysis for detonators , 2007 .

[10]  M. Cebova,et al.  Long-term effects of early administered sildenafil and NO donor on the cardiovascular system of SHR. , 2007, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society.

[11]  A. Maiti,et al.  Coarse-grained model for a molecular crystal , 2006 .

[12]  A. Maiti,et al.  Size and habit evolution of PETN crystals—a lattice Monte Carlo study , 2006 .

[13]  S Venugopalan,et al.  Prediction of heat of formation and related parameters of high energy materials. , 2006, Journal of hazardous materials.

[14]  Ronald W. Armstrong,et al.  Materials science and technology aspects of energetic (explosive) materials , 2006 .

[15]  Stephen M. Walley,et al.  Crystal sensitivities of energetic materials , 2006 .

[16]  T. N. Thomas,et al.  Emergence of supersteps on KH2PO4 crystal surfaces. , 2004, Physical review letters.

[17]  W. Proud,et al.  High-speed photographic study of the drop-weight impact response of ultrafine and conventional PETN and RDX , 2002 .

[18]  P. Dove,et al.  The role of Mg2+ as an impurity in calcite growth. , 2000, Science.

[19]  A. McPherson,et al.  Atomic force microscopy in the study of macromolecular crystal growth. , 2000, Annual review of biophysics and biomolecular structure.

[20]  F. Kristek,et al.  Pentaerythrityl tetranitrate attenuates structural changes in conduit arteries evoked by long‐term NO‐synthase inhibition , 2000, British journal of pharmacology.

[21]  J. D. Lee,et al.  An in-situ AFM investigation of canavalin crystallization kinetics , 1997 .

[22]  S. P. Marsh,et al.  Kinetics of phase coarsening in dense systems , 1996 .

[23]  James Wei,et al.  Diffusion mechanism of hydrocarbons in zeolites—I. Theory , 1992 .