Connectivity-based parcellation of human cortex using diffusion MRI: Establishing reproducibility, validity and observer independence in BA 44/45 and SMA/pre-SMA

The identification of specialized, functional regions of the human cortex is a vital precondition for neuroscience and clinical neurosurgery. Functional imaging modalities are used for their delineation in living subjects, but these methods rely on subject cooperation, and many regions of the human brain cannot be activated specifically. Diffusion tractography is a novel tool to identify such areas in the human brain, utilizing underlying white matter pathways to separate regions of differing specialization. We explore the reproducibility, generalizability and validity of diffusion tractography-based localization in four functional areas across subjects, timepoints and scanners, and validate findings against fMRI and post-mortem cytoarchitectonic data. With reproducibility across modalities, clustering methods, scanners, timepoints, and subjects in the order of 80-90%, we conclude that diffusion tractography represents a useful and objective tool for parcellation of the human cortex into functional regions, enabling studies into individual functional anatomy even when there are no specific activation paradigms available.

[1]  Alan C. Evans,et al.  Functional activation of the human frontal cortex during the performance of verbal working memory tasks. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[3]  Timothy Edward John Behrens,et al.  Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. , 2005, Cerebral cortex.

[4]  Karl Herholz,et al.  Localization of Language-Related Cortex with15O-Labeled Water PET in Patients with Gliomas , 1998, NeuroImage.

[5]  A. Nobre,et al.  Dissociating Linguistic Processes in the Left Inferior Frontal Cortex with Transcranial Magnetic Stimulation , 2022 .

[6]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[7]  Guillermo Ricardo Simari,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[8]  Renxin Chu,et al.  Scalable multichannel MRI data acquisition system , 2004, Magnetic resonance in medicine.

[9]  Timothy Edward John Behrens,et al.  Relating connectional architecture to grey matter function using diffusion imaging , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[11]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[12]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[13]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[14]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[15]  Mark A. Girolami,et al.  Mercer kernel-based clustering in feature space , 2002, IEEE Trans. Neural Networks.

[16]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Timothy Edward John Behrens,et al.  Connection patterns distinguish 3 regions of human parietal cortex. , 2006, Cerebral cortex.

[18]  Stefan Maderwald,et al.  Comparison of volume, four- and eight-channel head coils using standard and parallel imaging , 2005, European Radiology.

[19]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[20]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[21]  A. Friederici Processing local transitions versus long-distance syntactic hierarchies , 2004, Trends in Cognitive Sciences.

[22]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[23]  H. Alkadhi,et al.  Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. , 1997, Brain : a journal of neurology.

[24]  Thomas R. Knösche,et al.  DTI-Tractography based parcellation of the human precentral gyrus , 2005 .

[25]  J. Tanji Sequential organization of multiple movements: involvement of cortical motor areas. , 2001, Annual review of neuroscience.

[26]  Neil D. Lawrence,et al.  Automatic Determination of the Number of Clusters Using Spectral Algorithms , 2005, 2005 IEEE Workshop on Machine Learning for Signal Processing.

[27]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[28]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[29]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[30]  Alexander Brawanski,et al.  Level of evidence in the literature concerning brain tumor resection , 2004, Clinical Neurology and Neurosurgery.

[31]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[32]  P. Flechsig Die Leitungsbahnen im Gehirn und Rückenmark des Menschen auf Grund entwickelungsgeschichtlicher Untersuchungen , 2022 .

[33]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[34]  R. Cabeza,et al.  Imaging Cognition II: An Empirical Review of 275 PET and fMRI Studies , 2000, Journal of Cognitive Neuroscience.

[35]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[36]  Alan C. Evans,et al.  Transcranial Magnetic Stimulation during Positron Emission Tomography: A New Method for Studying Connectivity of the Human Cerebral Cortex , 1997, The Journal of Neuroscience.

[37]  G. Goldberg Supplementary motor area structure and function: Review and hypotheses , 1985, Behavioral and Brain Sciences.

[38]  A. Anwander,et al.  Connectivity-Based Parcellation of Broca's Area. , 2006, Cerebral cortex.

[39]  P. Strick,et al.  Motor areas of the medial wall: a review of their location and functional activation. , 1996, Cerebral cortex.

[40]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.