Thermomechanical investigation of unidirectional carbon fiber-polymer hybrid composites containing CNTs

In this research, the thermoelastic response of unidirectional carbon fiber (CF)-reinforced polymer hybrid composites containing carbon nanotubes (CNTs) are analyzed using a physics-based hierarchical micromechanical modeling approach. The developed model consists of a unit cell-based scheme along with the Eshelby method which can consider random orientation, random distribution, directional behavior, non-straight shape of CNTs and interphase region generated due to the non-bonded van der Waals interaction between a CNT and the polymer matrix. The predictions are compared with the experimental data available in the literature and a quite good agreement is pointed out for the fibrous polymer composite, CNT-polymer nanocomposite and fiber/CNT-polymer hybrid composite systems. The influences of several factors, including volume fraction, aspect ratio, off-axis angle and arrangement type of CFs as well as CNT volume fraction on the thermoelastic behavior of CF/CNT-polymer hybrid composites are examined in detail. The results indicate that the transverse CTE of a unidirectional CF-reinforced composite is significantly improved due to the addition of CNTs, while the hybrid composite CTE in the longitudinal direction is negligibly affected by the CNTs. Also, it is found that the role of CNT in the hybrid composite thermoelastic behavior becomes more prominent as the CF aspect ratio decreases.

[1]  Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites , 2017, 1702.01014.

[2]  A. Hamouda,et al.  Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites , 2013 .

[3]  S. Kundalwal,et al.  Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase , 2016 .

[4]  D. Hui,et al.  Recent advances in carbon-fiber-reinforced thermoplastic composites: A review , 2017, Composites Part B: Engineering.

[5]  Yunsheng Xu,et al.  Thermal behavior of single-walled carbon nanotube polymer–matrix composites , 2006 .

[6]  M. Cherkaoui,et al.  Fundamentals of Micromechanics of Solids , 2006 .

[7]  S. Meguid,et al.  Micromechanics modelling of the effective thermoelastic response of nano-tailored composites , 2015 .

[8]  K. Lafdi,et al.  Mechanical properties of carbon nanotubes based polymer composites , 2016 .

[9]  S. Meguid,et al.  Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells , 2015 .

[10]  Y. Zare Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly–Tyson theory , 2015 .

[11]  Steven M. Arnold,et al.  A Study of Influencing Factors on the Tensile Response of a Titanium Matrix Composite With Weak Interfacial Bonding , 2000 .

[12]  S. Baxter,et al.  Pseudo-percolation: Critical volume fractions and mechanical percolation in polymer nanocomposites , 2011 .

[13]  Y. Chiu,et al.  Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation , 2010 .

[14]  N. Hu,et al.  Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites , 2013, Nanoscale Research Letters.

[15]  R. Ansari,et al.  Micromechanics-based characterization of mechanical properties of fuzzy fiber-reinforced composites containing carbon nanotubes , 2018 .

[16]  Dilek Kumlutaş,et al.  A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials , 2007 .

[17]  Jang‐Kyo Kim,et al.  Effect of surfactant treatment on thermal stability and mechanical properties of CNT/polybenzoxazine nanocomposites , 2012 .

[18]  M. Ray,et al.  Micromechanical analysis of fuzzy fiber reinforced composites , 2011 .

[19]  C. Sato,et al.  Comparison of experimental and theoretical transverse elastic modulus of carbon fibers , 2006 .

[20]  R. Rafiee,et al.  Predicting mechanical properties of fuzzy fiber reinforced composites: radially grown carbon nanotubes on the carbon fiber , 2018 .

[21]  M. Hassanzadeh-Aghdam,et al.  Micromechanical modeling of thermal conducting behavior of general carbon nanotube-polymer nanocomposites , 2018 .

[22]  M. Benzeggagh,et al.  The effect of interphase on the elastic behavior of a glass/epoxy bundle , 1997 .

[23]  S. Lurie,et al.  Modeling the effective mechanical properties of “fuzzy fiber” composites across scales length , 2018, Composites Part B: Engineering.

[24]  T. Hashida,et al.  Negative axial thermal expansion coefficient of carbon nanotubes: Experimental determination based on measurements of coefficient of thermal expansion for aligned carbon nanotube reinforced epoxy composites , 2015 .

[25]  D. Qian,et al.  Elastic response of a carbon nanotube fiber reinforced polymeric composite: A numerical and experimental study , 2010 .

[26]  Wenyi Yan,et al.  A numerical study on carbon nanotube–hybridized carbon fibre pullout , 2014 .

[27]  I. Jasiuk,et al.  The effect of an inhomogeneous interphase on the elastic constants of transversely isotropic composites , 1993 .

[28]  M. Sham,et al.  Curing behavior and residual stresses in polymeric resins used for encapsulanting electronic packages , 2005 .

[29]  M. Dresselhaus,et al.  Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes , 2007 .

[30]  E. Sideridis Thermal expansion coefficients of fiber composites defined by the concept of the interphase , 1994 .

[31]  K. Liao,et al.  Interfacial characteristics of a carbon nanotube–polystyrene composite system , 2001 .

[32]  R. Christensen,et al.  Coefficient of Thermal Expansion for Composites with Randomly Oriented Fibers , 1981 .

[33]  Liying Jiang,et al.  Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites , 2013 .

[34]  F. Scarpa,et al.  Design of a hybrid carbon fibre/carbon nanotube composite for enhanced lightning strike resistance , 2015 .

[35]  T. Hashida,et al.  Potential use of CNTs for production of zero thermal expansion coefficient composite materials: An experimental evaluation of axial thermal expansion coefficient of CNTs using a combination of thermal expansion and uniaxial tensile tests , 2017 .

[36]  Tsu-Wei Chou,et al.  Multiscale modeling of compressive behavior of carbon nanotube/polymer composites , 2006 .

[37]  Dimitris C. Lagoudas,et al.  Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites , 2006 .

[38]  M. Hassanzadeh-Aghdam,et al.  The role of thermal residual stress on the yielding behavior of carbon nanotube–aluminum nanocomposites , 2018 .

[39]  Andrei A. Gusev,et al.  Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites , 2002 .

[40]  S. Sharma,et al.  Impact behavior and fractographic study of carbon nanotubes grafted carbon fiber-reinforced epoxy matrix multi-scale hybrid composites , 2015 .

[41]  Shanmugam Kumar,et al.  Multiscale modeling of effective electrical conductivity of short carbon fiber-carbon nanotube-polymer matrix hybrid composites , 2016 .

[42]  M. Ray,et al.  Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite , 2014 .

[43]  G. Marquis,et al.  The Effect of Nanotubes Waviness on Mechanical Properties of CNT/SMP Composites , 2013 .

[44]  S. Meguid,et al.  Multiscale modeling of carbon nanotube epoxy composites , 2015 .

[45]  S. Meguid,et al.  Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes , 2015 .

[46]  C. Dong Mechanical and thermo-mechanical properties of carbon nanotube reinforced composites , 2014 .

[47]  David Hui,et al.  Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes , 2011 .

[48]  Xiaoyan Liang,et al.  Revisiting the micro-buckling of carbon fibers in elastic memory composite plates under pure bending , 2018 .

[49]  M. Ray,et al.  Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method , 2012 .

[50]  B. Bednarcyk,et al.  Transverse tensile and creep modeling of continuously reinforced titanium composites with local debonding , 2002 .

[51]  M. Ray,et al.  A thermomechanical shear lag analysis of short fuzzy fiber reinforced composite containing wavy carbon nanotubes , 2014 .

[52]  Bhanu Pratap Singh,et al.  Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties , 2008 .

[53]  Saeed Akbari,et al.  Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes , 2014 .

[54]  Frank T. Fisher,et al.  Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties , 2003 .

[55]  R. Ansari,et al.  Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites , 2016 .

[56]  M. Hassanzadeh-Aghdam,et al.  Effect of CNT coating on the overall thermal conductivity of unidirectional polymer hybrid nanocomposites , 2018, International Journal of Heat and Mass Transfer.

[57]  M. Ray,et al.  Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes , 2012 .

[58]  M. Mahmoodi,et al.  Damage analysis of fiber reinforced Ti-alloy subjected to multi-axial loading—A micromechanical approach , 2011 .

[59]  M. Mahmoodi,et al.  A comprehensive micromechanical modeling of electro-thermo-mechanical behaviors of CNT reinforced smart nanocomposites , 2017 .

[60]  M. M. Aghdam,et al.  Micromechanics based analysis of randomly distributed fiber reinforced composites using simplified unit cell model , 2005 .

[61]  K. Honjo Thermal stresses and effective properties calculated for fiber composites using actual cylindrically-anisotropic properties of interfacial carbon coating , 2007 .