A new dual entropy core true random number generator

The entropy produced by a conventional single chaotic map based true random number generator (TRNG) is usually limited due to the finite number of Lyapunov exponents. In this work, we present a new dual entropy core TRNG architecture which is capable of producing high levels of randomness using hardware redundancy. Mathematical models of conventional and proposed TRNG architectures have been developed for a comparative analysis of the statistical and randomness properties. Our theoretical studies showed that the proposed architecture which employs Bernoulli map as the entropy source, has an inherently symmetric probability density function with zero mean. Using a practical information metric, T-entropy, we demonstrated that the proposed architecture performs better in terms of randomness, for a wide range of control parameter values when compared to its single entropy core counterpart. A proof of concept prototype of the proposed architecture is designed and implemented using a field programmable analog array integrated circuit. Random numbers acquired from the prototype have successfully passed all NIST 800.22 statistical tests.

[1]  M. Titchener Deterministic computation of complexity, information and entropy , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[2]  Ángel Rodríguez-Vázquez,et al.  Nonlinear switched-current CMOS IC for random signal generation , 1993 .

[3]  Ali Emre Pusane,et al.  Field programmable analog array implementation of logistic map , 2013, 2013 21st Signal Processing and Communications Applications Conference (SIU).

[4]  Berk Sunar,et al.  Cryptographic Hardware and Embedded Systems - CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings , 2005, CHES.

[5]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[6]  W. T. Holman,et al.  An integrated analog/digital random noise source , 1997 .

[7]  Ali Zeki,et al.  Integrated cross-coupled chaos oscillator applied to random number generation , 2009, IET Circuits Devices Syst..

[8]  C. H. Vincent,et al.  A compact and accurate generator for truly random binary digits , 1972 .

[9]  Günhan Dündar,et al.  A hardware efficient chaotic ring oscillator based true random number generator , 2011, 2011 18th IEEE International Conference on Electronics, Circuits, and Systems.

[10]  Berk Sunar,et al.  A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks , 2007, IEEE Transactions on Computers.

[11]  Ali Emre Pusane,et al.  Random number generation using field programmable analog array implementation of logistic map , 2013, 2013 21st Signal Processing and Communications Applications Conference (SIU).

[12]  R. Rovatti,et al.  A Fast Chaos-based True Random Number Generator for Cryptographic Applications , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[13]  George A. Constantinides,et al.  A High Throughput FPGA-Based Floating Point Conjugate Gradient Implementation for Dense Matrices , 2010, TRETS.

[14]  Berk Sunar,et al.  Improving the Robustness of Ring Oscillator TRNGs , 2010, TRETS.

[15]  J. A. Connelly,et al.  Modeling and simulation of oscillator-based random number generators , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[16]  Alessandro Trifiletti,et al.  A High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications on a Smart Card IC , 2003, IEEE Trans. Computers.

[17]  Tommaso Addabbo,et al.  Invariant Measures of Tunable Chaotic Sources: Robustness Analysis and Efficient Estimation , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[19]  Atila Alvandpour,et al.  A study of injection locking in ring oscillators , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[20]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[21]  L. Kocarev,et al.  Chaos-based random number generators. Part II: practical realization , 2001 .

[22]  R. Hu,et al.  Switched-current 3-bit CMOS 4.0-MHz wideband random signal generator , 2005, IEEE Journal of Solid-State Circuits.

[23]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[24]  Julian P. Murphy Field-programmable true random number generator , 2012 .

[25]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[26]  Johan A. K. Suykens,et al.  True random bit generation from a double-scroll attractor , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[27]  Ali Emre Pusane,et al.  A novel design method for discrete time chaos based true random number generators , 2014, Integr..

[28]  Sameer R. Sonkusale,et al.  High speed array of oscillator-based truly binary random number generators , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[29]  Günhan Dündar,et al.  A chaos based integrated jitter booster circuit for true random number generators , 2013, 2013 European Conference on Circuit Theory and Design (ECCTD).

[30]  Chik How Tan,et al.  Analysis and Enhancement of Random Number Generator in FPGA Based on Oscillator Rings , 2009, Int. J. Reconfigurable Comput..

[31]  Ángel Rodríguez-Vázquez,et al.  Integrated chaos generators , 2002 .

[32]  Philip Heng Wai Leong,et al.  Compact FPGA-based true and pseudo random number generators , 2003, 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2003. FCCM 2003..

[33]  Werner Ebeling,et al.  PARTITION-BASED ENTROPIES OF DETERMINISTIC AND STOCHASTIC MAPS , 2001 .

[34]  Holger Bock,et al.  An Offset-Compensated Oscillator-Based Random Bit Source for Security Applications , 2004, CHES.

[35]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[36]  Simon W. Moore,et al.  The Frequency Injection Attack on Ring-Oscillator-Based True Random Number Generators , 2009, CHES.

[37]  Zhi-Dong Shen,et al.  Thermal noise random number generator based on SHA-2 (512) , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[38]  Mieczyslaw Jessa,et al.  Enhancing the Randomness of a Combined True Random Number Generator Based on the Ring Oscillator Sampling Method , 2011, 2011 International Conference on Reconfigurable Computing and FPGAs.

[39]  J. Alvin Connelly,et al.  A noise-based IC random number generator for applications in cryptography , 2000 .