Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles

We report morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles with a nanoscale internal porous network produced by the combination of lithographic patterning and dealloying. Timed dealloying and post-dealloying thermal annealing techniques have been employed to precisely control the morphological evolution. We found that prolonged dealloying time caused further pore coarsening to increase by ∼4 nm, whereas thermal annealing induced both pore coalescence and disk shrinkage, which eventually led to pore elimination. Both types of morphological changes caused a blueshift in the major plasmonic extinction band of up to 200 nm, in contrast to the redshift (∼50 nm) observed in semi-infinite NPG thin films. In addition, a greater blueshift was observed in a higher Au atomic content starting alloy. The tunable plasmonic properties have great potential in surface-enhanced spectroscopy and optical sensing.

[1]  A. Karma,et al.  Evolution of nanoporosity in dealloying , 2001, Nature.

[2]  Eric C. Le Ru,et al.  Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects , 2008 .

[3]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[4]  S. T. Picraux,et al.  Morphology and porosity of nanoporous Au thin films formed by dealloying of AuxSi1−x , 2012 .

[5]  G. Amarendra,et al.  Ligament coarsening in nanoporous gold: Insights from positron annihilation study , 2013 .

[6]  Bernhard Lamprecht,et al.  Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering , 2002 .

[7]  Michael S. Feld,et al.  Noninvasive Glucose Sensing with Raman Spectroscopy , 2009 .

[8]  W. Knoll,et al.  Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. , 2006, Analytical chemistry.

[9]  P. Guan,et al.  Characteristic Length and Temperature Dependence of Surface Enhanced Raman Scattering of Nanoporous Gold , 2009 .

[10]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[11]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[12]  M. Bäumer,et al.  Nanoporous gold : from an ancient technology to a high-tech material , 2012 .

[13]  Rujia Zou,et al.  Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. , 2011, ACS nano.

[14]  Christoph Langhammer,et al.  Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms. , 2011, ACS nano.

[15]  Takeshi Fujita,et al.  Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements , 2007 .

[16]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[17]  Jian Zhang,et al.  Enhanced single molecule fluorescence and reduced observation volumes on nanoporous gold (NPG) films. , 2013, Chemical communications.

[18]  Wei-Chuan Shih,et al.  Performance of line-scan Raman microscopy for high-throughput chemical imaging of cell population. , 2014, Applied optics.

[19]  Yunfei Chen,et al.  Effect of thermal coarsening on the thermal conductivity of nanoporous gold , 2012, Journal of Materials Science.

[20]  Wei-Chuan Shih,et al.  Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release. , 2014, Nanoscale.

[21]  Chunxu Wang,et al.  Facile Fabrication of Large Area Polystyrene Colloidal Crystal Monolayer via Surfactant-free Langmuir-Blodgett Technique , 2007 .

[22]  M. Demkowicz,et al.  Coarsening by network restructuring in model nanoporous gold , 2011 .

[23]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[24]  Matthew P. Klein,et al.  Three-dimensional pore evolution of nanoporous metal particles for energy storage. , 2011, Journal of the American Chemical Society.

[25]  R. Spolenak,et al.  Dealloying of Au-Ag thin films with a composition gradient: Influence on morphology of nanoporous Au , 2007 .

[26]  M. L. Reed,et al.  The effects of post-fabrication annealing on the mechanical properties of freestanding nanoporous gold structures , 2007 .

[27]  Chien-Hung Li,et al.  Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots. , 2014, Nanoscale.

[28]  Wei-Chuan Shih,et al.  Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates. , 2013, Nanoscale.

[29]  Jian Zi,et al.  Localized surface plasmon resonance of nanoporous gold , 2011 .

[30]  Ursula Ebels,et al.  Large-scale, 2D arrays of magnetic nanoparticles , 2003 .

[31]  Tzung‐Fang Guo,et al.  A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor , 2013, Nanotechnology.

[32]  Mingwei Chen,et al.  Nanoporous Metals for Catalytic and Optical Applications , 2009 .

[33]  Jonah Erlebacher,et al.  Nanoporous Gold Leaf: “Ancient Technology”/Advanced Material , 2004 .

[34]  Jing Lu,et al.  Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection , 2014, Journal of biomedical optics.

[35]  Glenn P. Goodrich,et al.  Photothermal Efficiencies of Nanoshells and Nanorods for Clinical Therapeutic Applications , 2009 .

[36]  Thomas R Huser,et al.  Surface-enhanced Raman scattering on nanoporous Au , 2006 .

[37]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.