Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers

Synthetic fractals inherently carry spatially encoded frequency information that renders them as an ideal candidate for broadband optical structures. Nowhere is this more true than in the terahertz (THz) band where there is a lack of naturally occurring materials with valuable optical properties. One example are perfect absorbers that are a direct step towards the development of highly sought after detectors and sensing devices. Metasurface absorbers that can be used to substitute for natural materials suffer from poor broadband performance, whilst those with high absorption and broadband capability typically involve complex fabrication and design and are multilayered. Here, we demonstrate a polarization-insensitive ultrathin (~λ/6) planar metasurface THz absorber composed of supercells of fractal crosses capable of spanning one optical octave in bandwidth, whilst still being highly-efficient. A sufficiently thick polyimide interlayer produces a unique absorption mechanism based on Salisbury screen and an...

[1]  W. Tribe,et al.  Detection of Concealed Explosives at a Distance Using Terahertz Technology , 2007, Proceedings of the IEEE.

[2]  Henry S. Rzepa Multispectral Chiral Imaging with a Metalens. , 2018 .

[3]  S. Kaya,et al.  Rotated First Iteration Square Fractal Shaped Perfect Absorbers , 2015 .

[4]  A. Lee,et al.  Real-time terahertz imaging over a standoff distance (>25meters) , 2006 .

[5]  Xueqin Huang,et al.  Fractal plasmonic metamaterials: physics and applications , 2015 .

[6]  D. Cumming,et al.  Simulation, fabrication and characterization of THz metamaterial absorbers. , 2012, Journal of visualized experiments : JoVE.

[7]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[8]  Jean-Jacques Greffet,et al.  Plasmonics: From Basics to Advanced Topics , 2012 .

[9]  M. Takeda,et al.  Terahertz electric response of fractal metamaterial structures , 2008 .

[10]  Xianzhong Chen,et al.  Multifunctional metasurface lens for imaging and Fourier transform , 2016, Scientific Reports.

[11]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[12]  N. Zheludev,et al.  Asymmetric transmission: a generic property of two-dimensional periodic patterns , 2010, 1007.2620.

[13]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[14]  Yi Zhang,et al.  Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. , 2012, Nano letters.

[15]  T. Cui,et al.  A broadband terahertz absorber using multi-layer stacked bars , 2015 .

[16]  Ata Khalid,et al.  Polarization insensitive, broadband terahertz metamaterial absorber. , 2011, Optics letters.

[17]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[18]  Chunmei Ouyang,et al.  Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude , 2014, Advanced materials.

[19]  Willie J. Padilla,et al.  Electrically resonant terahertz metamaterials: Theoretical and experimental investigations , 2007 .

[20]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[21]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[22]  T. Cui,et al.  A bi-layered quad-band metamaterial absorber at terahertz frequencies , 2015 .

[23]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[24]  E. Linfield,et al.  Terahertz pulse imaging of ex vivo basal cell carcinoma. , 2003, The Journal of investigative dermatology.

[25]  P. Taday,et al.  Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity. , 2005, Journal of pharmaceutical sciences.

[26]  Xian Wang,et al.  Absorption enhancement of fractal frequency selective surface absorbers by using microwave absorbing material based substrates , 2011 .

[27]  Lei Zhou,et al.  Ultra-broadband terahertz metamaterial absorber , 2014 .

[28]  N. Fang,et al.  Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. , 2011, Nano letters.

[29]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[30]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[31]  G. Bastiaans,et al.  Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. , 2006, Optics express.

[32]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[33]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[34]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[35]  Chunmei Ouyang,et al.  Pancharatnam-Berry Phase Induced Spin-Selective Transmission in Herringbone Dielectric Metamaterials. , 2016, Advanced materials.

[36]  D. Cumming,et al.  A terahertz polarization insensitive dual band metamaterial absorber. , 2011, Optics letters.

[37]  N. Huang,et al.  Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber , 2015 .

[38]  Tie Jun Cui,et al.  Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation , 2012 .

[39]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[40]  Wojciech J. Krzysztofik,et al.  Fractal Geometry in Electromagnetics Applications-from Antenna to Metamaterials , 2014 .

[41]  Y. Wang,et al.  An ultrathin invisibility skin cloak for visible light , 2015, Science.