Porous carbon-based materials for hydrogen storage: advancement and challenges

The development of highly efficient hydrogen storage materials is one of the main challenges that must be tackled in a widely expected hydrogen economy. Physisorption in porous materials with high surface areas and chemisorption in hydrides are the two main options for solid state hydrogen storage, and both options possess their inherent advantages and drawbacks. In this work, recent progress towards porous carbon-based materials for hydrogen storage is analyzed and reviewed. The hydrogen storage performance of plain porous carbons, metal-supported porous carbons and porous carbons confined hydrides is summarized. Some strategies for effectively controlling the hydrogen storage capacity and tuning the hydrogen adsorption enthalpy for porous carbon materials via appropriate manipulation of surface area, pore volume and pore size are discussed in detail. The new development of porous carbon-based materials for hydrogen storage is particularly emphasized.

[1]  Hansong Cheng,et al.  Hydrogen spillover in the context of hydrogen storage using solid-state materials , 2008 .

[2]  Andreas Züttel,et al.  Hydrogen sorption by carbon nanotubes and other carbon nanostructures , 2002 .

[3]  Hui‐Ming Cheng,et al.  Effects of carbon on hydrogen storage performances of hydrides , 2010 .

[4]  S. Parker,et al.  Hydrogen Spillover on Carbon-Supported Metal Catalysts Studied by Inelastic Neutron Scattering. Surface Vibrational States and Hydrogen Riding Modes , 2003 .

[5]  Antonio B. Fuertes,et al.  Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage , 2011 .

[6]  John J. Vajo,et al.  Enhanced Hydrogen Storage Kinetics of LiBH4 in Nanoporous Carbon Scaffolds , 2008 .

[7]  Juhyoun Kwak,et al.  Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles , 2001, Nature.

[8]  J. Singer,et al.  Titanium Carbide Derived Nanoporous Carbon for Energy-Related Applications , 2006 .

[9]  Peter Lamp,et al.  Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes , 1998 .

[10]  G. Lu,et al.  Insights into hydrogen atom adsorption on and the electrochemical properties of nitrogen-substituted carbon materials. , 2005, The journal of physical chemistry. B.

[11]  Donald J. Siegel,et al.  High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. , 2010, Chemical Society reviews.

[12]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[13]  S. Deng,et al.  Hydrogen adsorption on ordered mesoporous carbons doped with Pd, Pt, Ni, and Ru. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[14]  Ulrich Eberle,et al.  Sustainable transportation based on electric vehicle concepts: a brief overview , 2010 .

[15]  A. Fletcher,et al.  Hydrogen adsorption on functionalized nanoporous activated carbons. , 2005, The journal of physical chemistry. B.

[16]  Qiang Chen,et al.  Synthesis of microporous boron-substituted carbon (b/c) materials using polymeric precursors for hydrogen physisorption. , 2008, Journal of the American Chemical Society.

[17]  J. Tse,et al.  Graphene nanostructures as tunable storage media for molecular hydrogen. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Emmanuel Tylianakis,et al.  Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms. , 2008, Nano letters.

[19]  Siegmar Roth,et al.  Hydrogen adsorption in different carbon nanostructures , 2005 .

[20]  I. Cabria,et al.  The optimum average nanopore size for hydrogen storage in carbon nanoporous materials , 2007 .

[21]  R. Mokaya,et al.  Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping. , 2006, The journal of physical chemistry. B.

[22]  T. Kyotani,et al.  High-pressure hydrogen storage in zeolite-templated carbon , 2009 .

[23]  T. Kyotani Control of pore structure in carbon , 2000 .

[24]  Chen,et al.  High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures , 1999, Science.

[25]  J. Vajo Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides , 2011 .

[26]  B. Viswanathan,et al.  Hydrogen storage in boron substituted carbon nanotubes , 2007 .

[27]  G. Yushin,et al.  Carbide‐Derived Carbons: Effect of Pore Size on Hydrogen Uptake and Heat of Adsorption , 2006 .

[28]  T. Kyotani,et al.  Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite , 2000 .

[29]  J. J. Pis,et al.  Textural development and hydrogen adsorption of carbon materials from PET waste , 2004 .

[30]  A. Arenillas,et al.  Activation of carbon nanofibres for hydrogen storage , 2006 .

[31]  Arnd Garsuch,et al.  Synthesis of a carbon replica of zeolite Y with large crystallite size , 2006 .

[32]  Tomoki Akita,et al.  From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. , 2011, Journal of the American Chemical Society.

[33]  Dolores Lozano-Castelló,et al.  Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures , 2007 .

[34]  M. Hartmann,et al.  Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53(Al) structural analogue by lithium doping. , 2009, Angewandte Chemie.

[35]  P. Georgiev,et al.  The rotational and translational dynamics of molecular hydrogen physisorbed in activated carbon: A direct probe of microporosity and hydrogen storage performance , 2006 .

[36]  B. Stansfield,et al.  On the control of carbon nanostructures for hydrogen storage applications , 2004 .

[37]  T. Kyotani,et al.  Very High Surface Area Microporous Carbon with a Three-Dimensional Nano-Array Structure: Synthesis and Its Molecular Structure , 2001 .

[38]  Junichi Miyamoto,et al.  Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation. , 2005, The journal of physical chemistry. B.

[39]  John J. Vajo,et al.  Hydrogen storage in destabilized chemical systems , 2007 .

[40]  Antonio B. Fuertes,et al.  Sustainable porous carbons with a superior performance for CO2 capture , 2011 .

[41]  M. Jaroniec,et al.  Ordered mesoporous carbons , 2001 .

[42]  H. Orikasa,et al.  Synthesis of Nitrogen-Containing Microporous Carbon with a Highly Ordered Structure and Effect of Nitrogen Doping on H2O Adsorption , 2005 .

[43]  V. Valtchev,et al.  First zeolite carbon replica with a well resolved X-ray diffraction pattern. , 2006, Chemical communications.

[44]  P. Adelhelm,et al.  Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. , 2010, ChemSusChem.

[45]  W. David,et al.  Effective hydrogen storage: a strategic chemistry challenge. , 2011, Faraday discussions.

[46]  R. T. Yang,et al.  Hydrogen storage by alkali-doped carbon nanotubes–revisited , 2000 .

[47]  Hangkyo Jin,et al.  Hydrogen adsorption characteristics of activated carbon , 2007 .

[48]  Michael Hirscher,et al.  Hydrogen storage properties of Pd nanoparticle/carbon template composites , 2008 .

[49]  R. Stephens,et al.  The kinetic enhancement of hydrogen cycling in NaAlH4 by melt infusion into nanoporous carbon aerogel , 2009, Nanotechnology.

[50]  Jinbao Gao,et al.  Confinement of NaAlH4 in Nanoporous Carbon: Impact on H2 Release, Reversibility, and Thermodynamics , 2010 .

[51]  Jörg Fink,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[52]  Juergen Biener,et al.  Advanced carbon aerogels for energy applications , 2011 .

[53]  P. Pfeifer,et al.  A review of boron enhanced nanoporous carbons for hydrogen adsorption: numerical perspective , 2010 .

[54]  P. Pfeifer,et al.  NUMERICAL ANALYSIS OF HYDROGEN STORAGE IN CARBON NANOPORES , 2010 .

[55]  K. Kaneko,et al.  Effect of Catalyst Size on Hydrogen Storage Capacity of Pt-Impregnated Active Carbon via Spillover , 2010 .

[56]  R. Mokaya,et al.  Hydrogen Storage in High Surface Area Carbons with Identical Surface Areas but Different Pore Sizes: Direct Demonstration of the Effects of Pore Size , 2012 .

[57]  R. Mokaya,et al.  A simplified synthesis of N-doped zeolite-templated carbons, the control of the level of zeolite-like ordering and its effect on hydrogen storage properties , 2011 .

[58]  Richard Chahine,et al.  Low-pressure adsorption storage of hydrogen , 1994 .

[59]  M. Izquierdo,et al.  Hydrogen adsorption studies on single wall carbon nanotubes , 2004 .

[60]  Yuyan Shao,et al.  Nanostructured carbon for energy storage and conversion , 2012 .

[61]  T. Baumann,et al.  Toward New Candidates for Hydrogen Storage: High-Surface-Area Carbon Aerogels , 2006 .

[62]  Tsong‐Jen Yang,et al.  Effect of Ni nanoparticle distribution on hydrogen uptake in carbon nanotubes , 2011 .

[63]  J. A. Alonso,et al.  Hydrogen storage in pure and Li-doped carbon nanopores: combined effects of concavity and doping. , 2008, The Journal of chemical physics.

[64]  R. Chahine,et al.  Determination of the Adsorption Isotherms of Hydrogen on Activated Carbons above the Critical Temperature of the Adsorbate over Wide Temperature and Pressure Ranges , 2001 .

[65]  Thomas Klassen,et al.  Hydrogen storage in magnesium-based hydrides and hydride composites , 2007 .

[66]  Yongde Xia,et al.  Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide , 2012 .

[67]  Arnd Garsuch,et al.  Synthesis of ordered carbon replicas by using Y-zeolite as template in a batch reactor , 2005 .

[68]  R. Mokaya,et al.  Zeolite ZSM‐5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template , 2004 .

[69]  P. Pfeifer,et al.  Hypothetical high-surface-area carbons with exceptional hydrogen storage capacities: open carbon frameworks. , 2012, Journal of the American Chemical Society.

[70]  B. D. Kay,et al.  Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. , 2005, Angewandte Chemie.

[71]  R. T. Yang,et al.  Enhanced Hydrogen Spillover on Carbon Surfaces Modified by Oxygen Plasma , 2010 .

[72]  D. Su,et al.  Metal-free heterogeneous catalysis for sustainable chemistry. , 2010, ChemSusChem.

[73]  T. Otowa,et al.  Development of KOH activated high surface area carbon and its application to drinking water purification , 1997 .

[74]  Andreas Züttel,et al.  Materials for hydrogen storage , 2003 .

[75]  T. Veziroglu,et al.  The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet , 2005 .

[76]  A. Cooper,et al.  Atomistic Simulation of Micropore Structure, Surface Area, and Gas Sorption Properties for Amorphous Microporous Polymer Networks , 2008 .

[77]  M. Oschatz,et al.  A cubic ordered, mesoporous carbide-derived carbon for gas and energy storage applications , 2010 .

[78]  R. T. Yang,et al.  Enhanced Hydrogen Storage on Pt-Doped Carbon by Plasma Reduction , 2010 .

[79]  F. Švec,et al.  Nanoporous polymers for hydrogen storage. , 2009, Small.

[80]  T Yildirim,et al.  Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. , 2005, Physical review letters.

[81]  T. Kyotani,et al.  Template synthesis of novel porous carbons using various types of zeolites , 2003 .

[82]  Ji Man Kim,et al.  Reversible replication between ordered mesoporous silica and mesoporous carbon. , 2002, Chemical communications.

[83]  R. Mokaya,et al.  Templated nanoscale porous carbons. , 2010, Nanoscale.

[84]  Yasuaki Kawai,et al.  Hydrogen adsorption and desorption by carbon materials , 2006 .

[85]  Taeghwan Hyeon,et al.  Recent Progress in the Synthesis of Porous Carbon Materials , 2006 .

[86]  R. T. Yang,et al.  Hydrogen storage on platinum nanoparticles doped on superactivated carbon , 2007 .

[87]  R. Mokaya,et al.  Ordered Mesoporous Carbon Monoliths: CVD Nanocasting and Hydrogen Storage Properties , 2007 .

[88]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[89]  F. Béguin,et al.  Electrochemical energy storage in ordered porous carbon materials , 2005 .

[90]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[91]  H. C. Foley Carbogenic molecular sieves: synthesis, properties and applications , 1995 .

[92]  R. Mokaya,et al.  Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework , 2012 .

[93]  D. Y. Kim,et al.  Graphite nanofibers prepared from catalytic graphitization of electrospun poly(vinylidene fluoride) nanofibers and their hydrogen storage capacity , 2007 .

[94]  H. Kanoh,et al.  Novel nanostructures of porous carbon synthesized with zeolite LTA-template and methanol , 2007 .

[95]  P. T. Moseley,et al.  Hydrogen storage by carbon materials , 2006 .

[96]  T. Kyotani,et al.  Templated Nanocarbons for Energy Storage , 2012, Advanced materials.

[97]  J. Johnson,et al.  Chemical Activation of Single-Walled Carbon Nanotubes for Hydrogen Adsorption , 2003 .

[98]  R. T. Yang,et al.  Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. , 2006, Journal of the American Chemical Society.

[99]  Grace Ordaz,et al.  The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements , 2007 .

[100]  A. Chambers,et al.  Hydrogen Storage in Graphite Nanofibers , 1998 .

[101]  Shuqin Song,et al.  Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3 , 2007 .

[102]  Stefan Kaskel,et al.  KOH activation of carbon-based materials for energy storage , 2012 .

[103]  S. Frankland,et al.  Hydrogen Raman shifts in carbon nanotubes from molecular dynamics simulation , 2001 .

[104]  Ned Stetson,et al.  Materials-based hydrogen storage: Attributes for near-term, early market PEM fuel cells , 2011 .

[105]  K. Thomas,et al.  Hydrogen adsorption and storage on porous materials , 2007 .

[106]  M. Shiraishi,et al.  Dense hydrogen adsorption on carbon subnanopores at 77 K , 2003 .

[107]  Yaping Zhou,et al.  A comparative study of hydrogen adsorption on superactivated carbon versus carbon nanotubes , 2004 .

[108]  J. Hranisavljevic,et al.  Hydrogen sorption on palladium-doped sepiolite-derived carbon nanofibers. , 2006, The journal of physical chemistry. B.

[109]  Juan Hu,et al.  High hydrogen storage capacity of porous carbons prepared by using activated carbon. , 2009, Journal of the American Chemical Society.

[110]  Quan-hong Yang,et al.  Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters , 2003 .

[111]  M. Jaroniec,et al.  Hierarchically porous phenolic resin-based carbons obtained by block copolymer-colloidal silica templating and post-synthesis activation with carbon dioxide and water vapor , 2011 .

[112]  J. Johnson,et al.  MOLECULAR SIMULATION OF HYDROGEN ADSORPTION IN SINGLE-WALLED CARBON NANOTUBES AND IDEALIZED CARBON SLIT PORES , 1999 .

[113]  A. B. Fuertes,et al.  High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials , 2011 .

[114]  Angela D. Lueking,et al.  Hydrogen Spillover from a Metal Oxide Catalyst onto Carbon Nanotubes—Implications for Hydrogen Storage , 2002 .

[115]  T. Hyeon,et al.  Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates , 2004 .

[116]  M. Izquierdo,et al.  Activated carbons with appropriate micropore size distribution for hydrogen adsorption , 2011 .

[117]  Xinglong Gou,et al.  A simple method for the production of highly ordered porous carbon materials with increased hydrogen uptake capacities , 2013 .

[118]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[119]  Florian Mertens,et al.  Reversible storage of hydrogen in destabilized LiBH4. , 2005, The journal of physical chemistry. B.

[120]  S. Ciraci,et al.  Molecular and dissociative adsorption of multiple hydrogen molecules on transition metal decorated C 60 , 2005, cond-mat/0505046.

[121]  T. Nejat Veziroglu,et al.  Storage of hydrogen in nanostructured carbon materials , 2009 .

[122]  Andreas Stein,et al.  Functionalization of Porous Carbon Materials with Designed Pore Architecture , 2009 .

[123]  R. Mokaya,et al.  Synthesis and High Hydrogen Storage Capacity of Zeolite-Like Carbons Nanocast Using As-Synthesized Zeolite Templates , 2008 .

[124]  Yoshiyuki Hattori,et al.  INVESTIGATION OF HYDROGEN STORAGE CAPACITY OF VARIOUS CARBON MATERIALS , 2007 .

[125]  C. Turner,et al.  Stabilization of platinum clusters by substitutional boron dopants in carbon supports. , 2006, The journal of physical chemistry. B.

[126]  M. Bettahar,et al.  Hydrogen storage on nickel catalysts supported on amorphous activated carbon , 2005 .

[127]  V. Balzani,et al.  The hydrogen issue. , 2011, ChemSusChem.

[128]  G. Cao,et al.  Tuning dehydrogenation temperature of carbon–ammonia borane nanocomposites , 2008 .

[129]  M. Terrones,et al.  Hydrogen storage in nanoporous carbon materials: myth and facts. , 2007, Physical chemistry chemical physics : PCCP.

[130]  Ulrich Eberle,et al.  Hydrogen storage: the remaining scientific and technological challenges. , 2007, Physical Chemistry, Chemical Physics - PCCP.

[131]  P. Pfeifer,et al.  Hydrogen storage in engineered carbon nanospaces , 2009, Nanotechnology.

[132]  M. Sevilla,et al.  Enhancement of Hydrogen Storage Capacity of Zeolite-Templated Carbons by Chemical Activation , 2010 .

[133]  G. Froudakis,et al.  A multi scale theoretical study of Li+ interaction with carbon nanotubes. , 2006, Journal of nanoscience and nanotechnology.

[134]  R. Mokaya,et al.  Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping. , 2009, Journal of the American Chemical Society.

[135]  Dongyuan Zhao,et al.  Synthesis of replica mesostructures by the nanocasting strategy , 2005 .

[136]  Craig M. Brown,et al.  Detection of Hydrogen Spillover in Palladium-Modified Activated Carbon Fibers During Hydrogen Adsorption , 2009 .

[137]  Jun Chen,et al.  Biomass Waste-Derived Microporous Carbons with Controlled Texture and Enhanced Hydrogen Uptake , 2008 .

[138]  Qing-fang Deng,et al.  Ordered mesoporous carbon catalyst for dehydrogenation of propane to propylene. , 2011, Chemical communications.

[139]  W. H. Bailey,et al.  An enhanced hydrogen adsorption enthalpy for fluoride intercalated graphite compounds. , 2009, Journal of the American Chemical Society.

[140]  C. Liang,et al.  Mesoporous carbon materials: synthesis and modification. , 2008, Angewandte Chemie.

[141]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[142]  K. Nahm,et al.  Intrinsic linear scaling of hydrogen storage capacity of carbon nanotubes with the specific surface area , 2007 .

[143]  Ping Liu,et al.  Fabrication and hydrogen sorption behaviour of nanoparticulate MgH2 incorporated in a porous carbon host , 2009, Nanotechnology.

[144]  H. Hatori,et al.  Adsorptive hydrogen storage in carbon and porous materials , 2004 .

[145]  R. Mokaya,et al.  CVD Nanocasting Routes to Zeolite‐Templated Carbons for Hydrogen Storage , 2010 .

[146]  R. Mokaya,et al.  Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. , 2007, Journal of the American Chemical Society.

[147]  J. Tascón,et al.  Synthesis of ordered micro–mesoporous carbons by activation of SBA-15 carbon replicas , 2012 .

[148]  A. Celzard,et al.  Advanced Preparative Strategies for Activated Carbons Designed for the Adsorptive Storage of Hydrogen , 2007 .

[149]  Yong-Hyun Kim,et al.  Nondissociative adsorption of H2 molecules in light-element-doped fullerenes. , 2006, Physical review letters.

[150]  A. Rud,et al.  Hydrogen storage of the Mg–C composites , 2008 .

[151]  I. Cabria,et al.  Simulation of the hydrogen storage in nanoporous carbons with different pore shapes , 2011 .

[152]  D. Zhao,et al.  Supramolecular Aggregates as Templates: Ordered Mesoporous Polymers and Carbons† , 2008 .

[153]  R. T. Yang,et al.  Hydrogen storage properties of carbons doped with ruthenium, platinum, and nickel nanoparticles , 2008 .

[154]  C. Arean,et al.  Materials for hydrogen storage: current research trends and perspectives. , 2008, Chemical communications.

[155]  George E. Froudakis,et al.  Why Li Doping in MOFs Enhances H2 Storage Capacity? A Multi-scale Theoretical Study , 2008 .

[156]  Kian-Lee Tan,et al.  Hydrogen uptake by carbon nanotubes , 2000 .

[157]  G. Cao,et al.  Coherent carbon cryogel-ammonia borane nanocomposites for H2 storage. , 2007, The journal of physical chemistry. B.

[158]  D. Lévesque,et al.  Adsorption Properties and Structural Characterization of Activated Carbons and Nanocarbons , 2004 .

[159]  P. Wheatley,et al.  Gas storage in nanoporous materials. , 2008, Angewandte Chemie.

[160]  T. Akita,et al.  Metal-organic framework as a template for porous carbon synthesis. , 2008, Journal of the American Chemical Society.

[161]  J. Choma,et al.  KOH activation of mesoporous carbons obtained by soft-templating , 2008 .

[162]  Seung M. Oh,et al.  Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors , 1999 .

[163]  Qingyuan Hu,et al.  Hydrogen adsorption in mesoporous carbons , 2004 .

[164]  Nathalie Job,et al.  Porous carbon xerogels with texture tailored by pH control during sol–gel process , 2004 .

[165]  Pierre Bénard,et al.  Storage of hydrogen on single-walled carbon nanotubes and other carbon structures , 2004 .

[166]  D. Pukazhselvan,et al.  High capacity hydrogen storage: Basic aspects, new developments and milestones , 2012 .

[167]  G. Lu,et al.  Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon , 2008 .

[168]  Michael Hirscher,et al.  Nanostructures with high surface area for hydrogen storage , 2005 .

[169]  Jun Chen,et al.  Studies on the Hydrogen Storage of Magnesium Nanowires by Density Functional Theory , 2009 .

[170]  A. Jain,et al.  Novel hydrogen storage materials: A review of lightweight complex hydrides , 2010 .

[171]  Billur Sakintuna,et al.  Templated Porous Carbons: A Review Article , 2005 .

[172]  R. T. Yang,et al.  New sorbents for hydrogen storage by hydrogen spillover – a review , 2008 .

[173]  Yi Wang,et al.  Reversible hydrogen storage of multi-wall carbon nanotubes doped with atomically dispersed lithium , 2010 .

[174]  S. Saadallah,et al.  The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons , 2005 .

[175]  G. Cao,et al.  Spectroscopic studies of dehydrogenation of ammonia borane in carbon cryogel. , 2007, The journal of physical chemistry. B.

[176]  Mauricio Terrones,et al.  Hydrogen storage in spherical nanoporous carbons , 2005 .

[177]  R. Ryoo,et al.  Mesoporous carbons with KOH activated framework and their hydrogen adsorption , 2007 .

[178]  Kenneth A. Smith,et al.  Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes , 1999 .

[179]  J. Patarin,et al.  Influence of the carbon precursors on the structural properties of EMT-type nanocasted-carbon replicas , 2009 .

[180]  Weiqiao Deng,et al.  Lithium-doped conjugated microporous polymers for reversible hydrogen storage. , 2010, Angewandte Chemie.

[181]  S. Towata,et al.  Hydrogen absorption kinetics and structural properties of Mg85Ni10Ca5 and Mg90Ni10 , 2005 .

[182]  R. T. Yang,et al.  Hydrogen Storage on Carbon-Based Adsorbents and Storage at Ambient Temperature by Hydrogen Spillover , 2010 .

[183]  Y. Gogotsi,et al.  Importance of pore size in high-pressure hydrogen storage by porous carbons , 2009 .

[184]  Sean C. Smith,et al.  Lithium‐Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen Storage , 2009 .

[185]  F. Besenbacher,et al.  A reversible nanoconfined chemical reaction. , 2010, ACS nano.

[186]  J. Dentzer,et al.  Hydrogen storage in activated carbon materials: Role of the nanoporous texture , 2004 .

[187]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[188]  Wenchuan Wang,et al.  Adsorption of Methane and Hydrogen on Mesocarbon Microbeads by Experiment and Molecular Simulation , 2004 .

[189]  G. Kubas,et al.  Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. , 2007, Chemical reviews.

[190]  Huanlei Wang,et al.  High performance of nanoporous carbon in cryogenic hydrogen storage and electrochemical capacitance , 2009 .

[191]  R. Mokaya,et al.  Hollow shells of high surface area graphitic N-doped carbon composites nanocast using zeolite templates , 2005 .

[192]  Diego Cazorla-Amorós,et al.  Hydrogen Storage in Activated Carbons and Activated Carbon Fibers , 2002 .

[193]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[194]  A. Seayad,et al.  Recent Advances in Hydrogen Storage in Metal‐Containing Inorganic Nanostructures and Related Materials , 2004 .

[195]  P. Bénard,et al.  Storage of hydrogen by physisorption on carbon and nanostructured materials , 2007 .

[196]  K. L. Tan,et al.  Nanosized Nickel(or Cobalt)/Graphite Composites for Hydrogen Storage , 2002 .

[197]  K. Gubbins,et al.  Hydrogen storage enhanced in Li-doped carbon replica of zeolites: a possible route to achieve fuel cell demand. , 2009, The Journal of chemical physics.

[198]  Y. Gogotsi,et al.  Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. , 2005, Journal of the American Chemical Society.

[199]  Anthony J. Lachawiec,et al.  Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes. , 2006, The journal of physical chemistry. B.

[200]  M. Sevilla,et al.  Activation of carbide-derived carbons: a route to materials with enhanced gas and energy storage properties , 2011 .

[201]  Flemming Besenbacher,et al.  Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials. , 2009, ACS nano.

[202]  Yoshio Kobayashi,et al.  Preparation of Mesoporous Carbon from Organic Polymer/Silica Nanocomposite , 2000 .

[203]  R. Mokaya,et al.  Evolution of optimal porosity for improved hydrogen storage in templated zeolite-like carbons , 2010 .