An Extension of the Metropolis Algorithm
暂无分享,去创建一个
[1] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[2] N. Popov. On the Rate of Convergence for Countable Markov Chains , 1980 .
[3] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[4] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[5] S. Caracciolo,et al. Nonlocal Monte Carlo algorithm for self-avoiding walks with fixed endpoints , 1990 .
[6] C. Hwang,et al. Optimal Spectral Structure of Reversible Stochastic Matrices, Monte Carlo Methods and the Simulation of Markov Random Fields , 1992 .
[7] G. Casella,et al. Rao-Blackwellisation of sampling schemes , 1996 .
[8] P. Diaconis,et al. Geometric Bounds for Eigenvalues of Markov Chains , 1991 .
[9] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .
[10] Antonietta Mira,et al. Ordering and Improving the Performance of Monte Carlo Markov Chains , 2001 .
[11] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[12] Persi Diaconis,et al. What Do We Know about the Metropolis Algorithm? , 1998, J. Comput. Syst. Sci..
[13] Jun S. Liu,et al. Statistical inference and Monte Carlo algorithms , 1996 .
[14] P. Peskun,et al. Optimum Monte-Carlo sampling using Markov chains , 1973 .
[15] P. Diaconis,et al. COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .
[16] J. A. Fill. Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .
[17] Jun S. Liu. Peskun's theorem and a modified discrete-state Gibbs sampler , 1996 .
[18] L. Tierney,et al. Efficiency and Convergence Properties of Slice Samplers , 2002 .