Metric regularity and quantitative stability in stochastic programs with probabilistic constraints

Introducing probabilistic constraints leads in general to nonconvex, nonsmooth or even disconti- nuous optimization models. In this paper, necessary and sufficient conditions for metric regularity of (several joint) probabilistic constraints are derived using recent results from nonsmooth analysis. The conditions apply to fairly general constraints and extend earlier work in this direction. Further, a verifiable sufficient condition for quadratic growth of the objective function in a more specific convex stochastic program is indicated and applied in order to obtain a new result on quantitative stability of solution sets when the underlying probability distribution is subjected to perturbations. This is used to derive bounds for the deviation of solution sets when the probability measure is replaced by empirical estimates.

[1]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[2]  A. Prékopa Logarithmic concave measures with applications to stochastic programming , 1971 .

[3]  Werner Römisch,et al.  Obtaining convergence rates for approximations in stochastic programming , 1987 .

[4]  Werner Römisch,et al.  Distribution sensitivity for certain classes of chance-constrained models with application to power dispatch , 1991 .

[5]  J. Dupacová Stability and sensitivity-analysis for stochastic programming , 1991 .

[6]  A. Ioffe Approximate subdifferentials and applications II , 1986 .

[7]  J. S. Wang,et al.  Continuity of the feasible solution sets of probabilistic constrained programs , 1989 .

[8]  M. Talagrand Sharper Bounds for Gaussian and Empirical Processes , 1994 .

[9]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[10]  János Mayer,et al.  Computational Techniques for Probabilistic Constrained Optimization Problems , 1992 .

[11]  B. Mordukhovich Generalized Differential Calculus for Nonsmooth and Set-Valued Mappings , 1994 .

[12]  Stephen M. Robinson,et al.  Local epi-continuity and local optimization , 1987, Math. Program..

[13]  A. Jourani Constraint qualifications and Lagrange multipliers in nondifferentiable programming problems , 1994 .

[14]  Vlasta Kanková,et al.  On the convergence rate of empirical estimates in chance constrained stochastic programming , 1990, Kybernetika.

[15]  Vlasta Kaňková A note on estimates in stochastic programming , 1994 .

[16]  R. Rockafellar,et al.  Integral functionals, normal integrands and measurable selections , 1976 .

[17]  Roberto Lucchetti,et al.  Uniform convergence of probability measures: topological criteria , 1994 .

[18]  R. Rao,et al.  Normal Approximation and Asymptotic Expansions , 1976 .

[19]  G. Salinetti Approximations for chance-constrained programming problems , 1983 .

[20]  R. Rockafellar,et al.  Lipschitzian properties of multifunctions , 1985 .

[21]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[22]  Peter Kall,et al.  On approximations and stability in stochastic programming , 1987 .

[23]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[24]  J. Frédéric Bonnans,et al.  Second-order Sufficiency and Quadratic Growth for Nonisolated Minima , 1995, Math. Oper. Res..

[25]  Nicole Gröwe Estimated stochastic programs with chance constraints , 1997 .

[26]  C. Borell Convex set functions ind-space , 1975 .

[27]  Werner Römisch,et al.  Lipschitz Stability for Stochastic Programs with Complete Recourse , 1996, SIAM J. Optim..

[28]  J Figueira,et al.  Stochastic Programming , 1998, J. Oper. Res. Soc..

[29]  Alfred Auslender,et al.  Stability in Mathematical Programming with Nondifferentiable Data , 1984 .

[30]  Roger J.-B. Wets Challenges in stochastic programming , 1996, Math. Program..

[31]  S. Vogel Stability results for stochastic programming problems , 1988 .

[32]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[33]  Z. Artstein Sensitivity with respect to the underlying information in stochastic programs , 1994 .

[34]  Lionel Thibault,et al.  Approximate subdifferential and metric regularity: The finite-dimensional case , 1990, Math. Program..

[35]  B. Kummer Linearly and nonlinearly perturbed optimization problems in finite dimension , 1987 .

[36]  B. Mordukhovich Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions , 1993 .

[37]  S. Gupta,et al.  Brunn-Minkowski inequality and its aftermath , 1980 .

[38]  Alexander Shapiro,et al.  Asymptotic analysis of stochastic programs , 1991, Ann. Oper. Res..

[39]  René Henrion Topological characterization of the approximate subdifferential in the finite-dimensional case , 1995, Math. Methods Oper. Res..

[40]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[41]  René Henrion,et al.  Topological Properties of the Approximate Subdifferential , 1997 .

[42]  Roger J.-B. Wets,et al.  Quantitative Stability of Variational Systems II. A Framework for Nonlinear Conditioning , 1993, SIAM J. Optim..

[43]  J. Borwein Stability and regular points of inequality systems , 1986 .

[44]  Jitka Dupačová,et al.  Stability in stochastic programming — Probabilistic constraints , 1986 .

[45]  A. Shapiro Perturbation analysis of optimization problems in banach spaces , 1992 .

[46]  Werner Römisch,et al.  Distribution sensitivity in stochastic programming , 1991, Math. Program..

[47]  Silvia Vogel,et al.  On stability in multiobjective programming — A stochastic approach , 1992, Math. Program..

[48]  R. Wets,et al.  Stochastic programming , 1989 .

[49]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .

[50]  Patrick Billingsley,et al.  Uniformity in weak convergence , 1967 .

[51]  A. Ioffe Approximate subdifferentials and applications. I. The finite-dimensional theory , 1984 .

[52]  Diethard Klatte,et al.  Error bounds for solutions of linear equations and inequalities , 1995, Math. Methods Oper. Res..

[53]  Werner Römisch,et al.  Stability analysis for stochastic programs , 1991, Ann. Oper. Res..

[54]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[55]  J. Penot Metric regularity, openness and Lipschitzian behavior of multifunctions , 1989 .