ITU-T T.851: an enhanced entropy coding design for JPEG baseline images

The Joint Photographic Experts Group (JPEG) baseline standard remains a popular and pervasive standard for continuous tone, still image coding. The "J" in JPEG acknowledges its two main parent organizations, ISO (International Organization for Standardization) and the ITU-T (International Telecommunications Union - Telecommunication). Notwithstanding their joint efforts, both groups have subsequently (and separately) standardized many improvements for still image coding. Recently, the ITU-T Study Group 16 completed the standardization for a new entropy coder - called the Q15-coder, whose statistical model is from the original JPEG-1 standard. This new standard, ITU-T Rec. T.851, can be used in lieu of the traditional Huffman (a form of variable length coding) entropy coder, and complements the QM arithmetic coder, both originally standardized in JPEG as ITU-T T.81 | ISO/IEC 10918:1. In contrast to Huffman entropy coding, arithmetic coding makes no assumptions about an image's statistics, but rather responds in real time. This paper will present a tutorial on arithmetic coding, provide a history of arithmetic coding in JPEG, share the motivation for T.851, outline its changes, and provide comparison results with both the baseline Huffman and the original QM-coder entropy coders. It will conclude with suggestions for future work.

[1]  Joan L. Mitchell,et al.  The Qx-coder , 1998, IBM J. Res. Dev..

[2]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[3]  Norman Abramson,et al.  Information theory and coding , 1963 .

[4]  Glen G. Langdon,et al.  An Overview of the Basic Principles of the Q-Coder Adaptive Binary Arithmetic Coder , 1988, IBM J. Res. Dev..

[5]  Joan L. Mitchell,et al.  Optimal Hardware and Software Arithmetic Coding Procedures for the Q-Coder , 1988, IBM J. Res. Dev..

[6]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[7]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[8]  Ronald Arps,et al.  A Multi-Purpose VLSI Chip for Adaptive Data Compression of Bilevel Images , 1988, IBM J. Res. Dev..

[9]  Joan L. Mitchell,et al.  Probability Estimation for the Q-Coder , 1988, IBM J. Res. Dev..

[10]  Jorma Rissanen,et al.  Generalized Kraft Inequality and Arithmetic Coding , 1976, IBM J. Res. Dev..

[11]  Joan L. Mitchell,et al.  Software Implementations of the Q-Coder , 1988, IBM J. Res. Dev..

[12]  Joan L. Mitchell,et al.  Series/1-Based Videoconferencing System , 1983, IBM Syst. J..

[13]  Glen G. Langdon,et al.  An Introduction to Arithmetic Coding , 1984, IBM J. Res. Dev..

[14]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[15]  M. G. Pelchat,et al.  Compression of Black-White Images with Arithmetic Coding , 1981 .

[16]  Joan L. Mitchell,et al.  Gray-Scale Image Coding for Freeze-Frame Videoconferencing , 1986, IEEE Trans. Commun..

[17]  R. Hunter,et al.  International digital facsimile coding standards , 1980, Proceedings of the IEEE.