Lp-Theory for a Class of Non-Newtonian Fluids

Local-in-time well-posedness of the initial-boundary value problem for a class of non-Newtonian Navier–Stokes problems on domains with compact $C^{\mbox{3-}}$-boundary is proven in an $L_p$-setting for any space dimension $n\geq2$. The stress tensor is assumed to be of the generalized Newtonian type, i.e., $\cS=2\mu(|{\mathcal E}|_2^2){\mathcal E} -\pi I$, ${\mathcal E}=\frac{1}{2}(\nabla u+\nabla u^{\sf T}),$ where $|{\mathcal E}|_2^2=\sum_{i,j=1}^n \varepsilon_{ij}^2$ denotes the Hilbert–Schmidt norm of the rate of strain tensor ${\mathcal E}$. The viscosity function $\mu\in C^{2-}({\mathbb R}_+)$ is subject only to the condition $\mu(s)>0$, $\mu(s)+2s\mu^\prime(s)>0$, $s\geq 0,$ which for the standard power-law–like function $\mu(s)=\mu_0(1+s)^{\frac{d-2}{2}}$ merely means $\mu_0>0$ and $d\geq 1$. This result is based on maximal regularity theory for a suitable linear problem and a contraction argument.

[1]  L. Diening,et al.  Strong Solutions for Generalized Newtonian Fluids , 2005 .

[2]  J. Málek Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .

[3]  H. Triebel Theory of Function Spaces III , 2008 .

[4]  J. Málek,et al.  ON THE NON-NEWTONIAN INCOMPRESSIBLE FLUIDS , 1993 .

[5]  R. Haller,et al.  Mikhlin's Theorem for Operator–Valued Fourier Multipliers in n Variables , 2002 .

[6]  H. Triebel Theory Of Function Spaces , 1983 .

[7]  Hantaek Bae,et al.  On the Navier-Stokes equations , 2009 .

[8]  Joachim Escher,et al.  Analytic solutions for a Stefan problem with Gibbs-Thomson correction , 2003 .

[9]  The $H^{\infty}-$calculus and sums of closed operators , 2000, math/0010155.

[10]  S. Agmon On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems , 1962 .

[11]  H. Amann Stability of the Rest State of a viscous incompressible fluid , 1994 .

[12]  Kumbakonam R. Rajagopal,et al.  EXISTENCE AND REGULARITY OF SOLUTIONS AND THE STABILITY OF THE REST STATE FOR FLUIDS WITH SHEAR DEPENDENT VISCOSITY , 1995 .

[13]  V. Solonnikov Lp-Estimates for Solutions to the Initial Boundary-Value Problem for the Generalized Stokes System in a Bounded Domain , 2001 .

[14]  Jan Prüss,et al.  Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in $L_p$-spaces , 2002 .

[15]  Josef Málek,et al.  On Analysis of Steady Flows of Fluids with Shear-Dependent Viscosity Based on the Lipschitz Truncation Method , 2003, SIAM J. Math. Anal..

[16]  J. Prüss Evolutionary Integral Equations And Applications , 1993 .

[17]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[18]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[19]  P. Clément,et al.  Abstract parabolic quasilinear equations and applications to a groundwater flow problem , 1993 .

[20]  Roger I. Tanner,et al.  Rheology : an historical perspective , 1998 .

[21]  N. Kalton,et al.  The H ∞ −calculus and sums of closed operators , 2001 .

[22]  Robert Denk,et al.  Fourier multipliers and problems of elliptic and parabolic type , 2003 .

[23]  Robert Denk,et al.  Optimal Lp-Lq-regularity for parabolic problems with inhomogeneous boundary data , 2005 .

[24]  C. Simader,et al.  The Dirichlet problem for the Laplacian in bounded and unbounded domains : a new approach to weak, strong and (2+k)-solutions in Sobolev-type spaces , 1996 .

[25]  M. Vishik,et al.  ELLIPTIC PROBLEMS WITH A PARAMETER AND PARABOLIC PROBLEMS OF GENERAL TYPE , 1964 .