Bioinspired Cellular Single-Walled Carbon Nanotube Aerogels with Temperature-Invariant Elasticity and Fatigue Resistance for Potential Energy Dissipation

[1]  Lihua Feng,et al.  Sonication-Free Dispersion of Single-Walled Carbon Nanotubes for High-Sorption-Capacity Aerogel Fabrication , 2022, Molecules.

[2]  Chuyang Y. Tang,et al.  Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers , 2022, Nature Communications.

[3]  B. Ding,et al.  Tailoring Nanonets‐Engineered Superflexible Nanofibrous Aerogels with Hierarchical Cage‐Like Architecture Enables Renewable Antimicrobial Air Filtration , 2021, Advanced Functional Materials.

[4]  K. Buczkowska,et al.  Changes in the Strength Properties and Phase Transition of Gypsum Modified with Microspheres, Aerogel and HEMC Polymer , 2021, Materials.

[5]  Hao Bai,et al.  Mechanically Efficient Cellular Materials Inspired by Cuttlebone , 2021, Advanced materials.

[6]  Caofeng Pan,et al.  Lightweight, Superelastic, and Hydrophobic Polyimide Nanofiber /MXene Composite Aerogel for Wearable Piezoresistive Sensor and Oil/Water Separation Applications , 2021, Advanced Functional Materials.

[7]  Xingrong Zeng,et al.  Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor , 2021 .

[8]  Aibing Chen,et al.  PVP-assisted preparation of nitrogen doped mesoporous carbon materials for supercapacitors , 2020 .

[9]  X. Duan,et al.  Elastic ceramic aerogels for thermal superinsulation under extreme conditions , 2020 .

[10]  Jin Zhang,et al.  Horizontal Single-Walled Carbon Nanotube Arrays: Controlled Synthesis, Characterizations, and Applications. , 2020, Chemical reviews.

[11]  J. Aizenberg,et al.  Mechanically robust lattices inspired by deep-sea glass sponges , 2020, Nature Materials.

[12]  A. Bonnin,et al.  Additive manufacturing of silica aerogels , 2020, Nature.

[13]  L. Lona,et al.  Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering , 2020, Materials Today.

[14]  Hao Bai,et al.  Smart Sponge for Fast Liquid Absorption and Thermal Responsive Self‐Squeezing , 2020, Advanced materials.

[15]  J. Lewis,et al.  Polymer Foams: Architected Polymer Foams via Direct Bubble Writing (Adv. Mater. 46/2019) , 2019, Advanced Materials.

[16]  Shuhong Yu,et al.  Superelastic Hard Carbon Nanofiber Aerogels , 2019, Advanced materials.

[17]  P. Ajayan,et al.  Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures , 2019, Science Advances.

[18]  Quan-hong Yang,et al.  A Directional Strain Sensor Based on Anisotropic Microhoneycomb Cellulose Nanofiber-Carbon Nanotube Hybrid Aerogels Prepared by Unidirectional Freeze Drying. , 2019, Small.

[19]  H. Fei,et al.  Double-negative-index ceramic aerogels for thermal superinsulation , 2019, Science.

[20]  Aibing Chen,et al.  PVP-assisted synthesis of nitrogen-doped hollow carbon spheres for supercapacitors , 2018, Journal of Alloys and Compounds.

[21]  B. Ding,et al.  Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity , 2018, Science Advances.

[22]  Sevket U. Yuruker,et al.  Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. , 2017, ACS nano.

[23]  Damiano Pasini,et al.  Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting , 2017 .

[24]  Hao Chen,et al.  Wet‐Spun Superelastic Graphene Aerogel Millispheres with Group Effect , 2017, Advanced materials.

[25]  C. Galiotis,et al.  Graphene aerogels: a review , 2017 .

[26]  Weibang Lu,et al.  Ultra‐Lightweight and Highly Adaptive All‐Carbon Elastic Conductors with Stable Electrical Resistance , 2017 .

[27]  Mohammad F. Islam,et al.  Graphene-Coated Carbon Nanotube Aerogels Remain Superelastic while Resisting Fatigue and Creep over −100 to +500 °C , 2017 .

[28]  M. Merklein,et al.  A new approach for the determination of the linear elastic modulus from uniaxial tensile tests of sheet metals , 2017 .

[29]  Shoushan Fan,et al.  Self‐assembly of 3D Carbon Nanotube Sponges: A Simple and Controllable Way to Build Macroscopic and Ultralight Porous Architectures , 2017, Advanced materials.

[30]  Liang Xu,et al.  Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure , 2016, Nature Communications.

[31]  Zikang Tang,et al.  Carbon Nanotube Sponges, Aerogels, and Hierarchical Composites: Synthesis, Properties, and Energy Applications , 2016 .

[32]  T. Fisher,et al.  Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity , 2016, Advanced materials.

[33]  Hongwei Zhu,et al.  Three-dimensional Sponges with Super Mechanical Stability: Harnessing True Elasticity of Individual Carbon Nanotubes in Macroscopic Architectures , 2016, Scientific Reports.

[34]  I-Wei Chen,et al.  A New Tubular Graphene Form of a Tetrahedrally Connected Cellular Structure , 2015, Advanced materials.

[35]  Zikang Tang,et al.  In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance , 2015, Scientific Reports.

[36]  R. Sun,et al.  Covalently bonded nitrogen-doped carbon-nanotube-supported Ag hybrid sponges: Synthesis, structure manipulation, and its application for flexible conductors and strain-gauge sensors , 2015 .

[37]  Alexandra M. Golobic,et al.  Highly compressible 3D periodic graphene aerogel microlattices , 2015, Nature Communications.

[38]  Fan Zhang,et al.  Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio , 2015, Nature Communications.

[39]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[40]  B. Ding,et al.  Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality , 2014, Nature Communications.

[41]  Xiaodong He,et al.  Elastic improvement of carbon nanotube sponges by depositing amorphous carbon coating , 2014 .

[42]  Robert C. Maher,et al.  Mesoscale assembly of chemically modified graphene into complex cellular networks , 2014, Nature Communications.

[43]  A. Polini,et al.  Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. , 2013, Chemistry of materials : a publication of the American Chemical Society.

[44]  Jongmin Shim,et al.  3D Soft Metamaterials with Negative Poisson's Ratio , 2013, Advanced materials.

[45]  Han Hu,et al.  Ultralight and Highly Compressible Graphene Aerogels , 2013, Advanced materials.

[46]  Youngseok Oh,et al.  Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. , 2012, Nature nanotechnology.

[47]  Zhu Zhu,et al.  Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. , 2012, Angewandte Chemie.

[48]  P. Ajayan,et al.  Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions , 2012, Scientific Reports.

[49]  Dan Li,et al.  Biomimetic superelastic graphene-based cellular monoliths , 2012, Nature Communications.

[50]  Yern Seung Kim,et al.  Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers , 2012 .

[51]  L. Valdevit,et al.  Ultralight Metallic Microlattices , 2011, Science.

[52]  K. Hata,et al.  Carbon Nanotubes with Temperature-Invariant Viscoelasticity from –196° to 1000°C , 2010, Science.

[53]  Amit Kumar,et al.  Ultralight multiwalled carbon nanotube aerogel. , 2010, ACS nano.

[54]  S. Adhikari,et al.  Coupled thermomechanics of single-wall carbon nanotubes , 2010, 1008.5098.

[55]  Hongwei Zhu,et al.  Carbon Nanotube Sponges , 2010, Advanced materials.

[56]  Y. Gartstein,et al.  Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles , 2009, Science.

[57]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[58]  Omkaram Nalamasu,et al.  Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. , 2007, Nature nanotechnology.

[59]  D. Milkie,et al.  Carbon Nanotube Aerogels , 2007 .

[60]  J. Garai,et al.  The temperature dependence of the isothermal bulk modulus at 1 bar pressure , 2006, physics/0601101.

[61]  W Gregory Sawyer,et al.  Super-Compressible Foamlike Carbon Nanotube Films , 2005, Science.

[62]  M. Maugey,et al.  An Experimental Approach to the Percolation of Sticky Nanotubes , 2005, Science.

[63]  M. Monthioux,et al.  Chemical vapor deposition of pyrolytic carbon on carbon nanotubes. Part 2. Texture and structure , 2005 .

[64]  L. Gibson Biomechanics of cellular solids. , 2005, Journal of biomechanics.

[65]  G. S. Cole,et al.  Light weight materials for automotive applications , 1995 .