Enhancing Förster nonradiative energy transfer via plasmon interaction

Plasmon-enhanced nonradiative energy transfer is demonstrated in two inorganic semiconductor systems. The first is comprised of colloidal nanocrystal CdTe donor and acceptor quantum dots, while the second is a hybrid InGaN quantum well-CdSe/ZnS quantum dot donor-acceptor system. Both structures are in a planar geometry. In the first case a monolayer of Au nanospheres is sandwiched between donor and acceptor quantum dot monolayers. The largest energy transfer efficiency is seen when the donor is ~3 nm from the Au nanopshere. A plasmon-enhanced energy transfer efficiency of ~ 40% has been achieved for a separation of 3 nm between the Au nanopshere monolayer and the acceptor monolayer. Despite the increased energy transfer efficiency these conditions result in strong quenching of the acceptor QD emission. By tuning the Au nanosphere concentration and Au nanosphere-acceptor QD separation the acceptor QD emission can be increased by a factor of ~2.8. The plasmon-enhanced nonradiative energy transfer is observed to extend over larger distances than conventional Forster resonance energy transfer. Under the experimental conditions reported herein, it can be described by the same d-4 dependence but with a larger characteristic distance. Using a Ag nanobox array plasmonic component plasmon-enhanced nonradiative energy transfer has also demonstrated from an InGaN quantum well to a ~80 nm thick layer of CdSe/ZnS colloidal quantum dots. An efficiency of ~27% is achieved, with an overall increase in the QD emission by ~70%.

[1]  J. Lakowicz,et al.  Enhanced Förster Resonance Energy Transfer (FRET) on Single Metal Particle. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[2]  Denis Boudreau,et al.  FRET enhancement in multilayer core-shell nanoparticles. , 2009, Nano letters.

[3]  A. L. Bradley,et al.  A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters. , 2016, The Journal of chemical physics.

[4]  A. L. Bradley,et al.  Effect of Metal Nanoparticle Concentration on Localized Surface Plasmon Mediated Förster Resonant Energy Transfer , 2012 .

[5]  A. L. Bradley,et al.  Förster resonant energy transfer in quantum dot layers , 2010 .

[6]  W. Barnes,et al.  Förster energy transfer in an optical microcavity. , 2000, Science.

[7]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[8]  A. Nitzan,et al.  Accelerated energy transfer between molecules near a solid particle , 1984 .

[9]  J. Wenger,et al.  Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures. , 2014, Nano letters.

[10]  Hilmi Volkan Demir,et al.  Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons. , 2013, Nano letters.

[11]  Pavlos G. Lagoudakis,et al.  Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures , 2007 .

[12]  Vladimir Lesnyak,et al.  Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer. , 2014, ACS nano.

[13]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[14]  David R. Smith,et al.  Control of radiative processes using tunable plasmonic nanopatch antennas. , 2014, Nano letters.

[15]  A. L. Bradley,et al.  Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots , 2008 .

[16]  Vladimir Lesnyak,et al.  Concentration dependence of Forster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: Effect of donor-donor interactions , 2011 .

[17]  John Van Derlofske,et al.  Computer modeling of LED light pipe systems for uniform display illumination , 2001 .

[18]  A. L. Bradley,et al.  Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles. , 2012, ACS nano.

[19]  Nicholas A. Kotov,et al.  Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles , 2007 .

[20]  Dmitri V Talapin,et al.  Increased Color‐Conversion Efficiency in Hybrid Light‐Emitting Diodes utilizing Non‐Radiative Energy Transfer , 2009, Advanced materials.

[21]  A. L. Bradley,et al.  Carrier density dependence of plasmon-enhanced nonradiative energy transfer in a hybrid quantum well-quantum dot structure. , 2015, Optics express.

[22]  Robert C. Bush,et al.  P‐95: Fresnel Lenses in Rear Projection Displays , 2001 .

[23]  Thomas A. Klar,et al.  Aqueous synthesis of thiol-capped CdTe nanocrystals : State-of-the-art , 2007 .

[24]  Darryl L. Smith,et al.  Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well , 2004, Nature.

[25]  W. Barnes,et al.  Energy Transfer Across a Metal Film Mediated by Surface Plasmon Polaritons , 2004, Science.

[26]  M. Nakayama,et al.  Experimental verification of Förster energy transfer between semiconductor quantum dots , 2008 .

[27]  N O Reich,et al.  Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. , 2005, Journal of the American Chemical Society.