The antiSMASH database version 3: increased taxonomic coverage and new query features for modular enzymes

Abstract Microorganisms produce natural products that are frequently used in the development of antibacterial, antiviral, and anticancer drugs, pesticides, herbicides, or fungicides. In recent years, genome mining has evolved into a prominent method to access this potential. antiSMASH is one of the most popular tools for this task. Here, we present version 3 of the antiSMASH database, providing a means to access and query precomputed antiSMASH-5.2-detected biosynthetic gene clusters from representative, publicly available, high-quality microbial genomes via an interactive graphical user interface. In version 3, the database contains 147 517 high quality BGC regions from 388 archaeal, 25 236 bacterial and 177 fungal genomes and is available at https://antismash-db.secondarymetabolites.org/.

[1]  Tilmann Weber,et al.  The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production , 2016, Synthetic and systems biotechnology.

[2]  C. Currie,et al.  Gene fragmentation in bacterial draft genomes: extent, consequences and mitigation , 2012, BMC Genomics.

[3]  Ole Tange,et al.  GNU Parallel: The Command-Line Power Tool , 2011, login Usenix Mag..

[4]  Kai Blin,et al.  antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..

[5]  Renzo Kottmann,et al.  The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters , 2016, Nucleic Acids Res..

[6]  Kai Blin,et al.  The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters , 2018, Nucleic Acids Res..

[7]  I-Min A. Chen,et al.  IMG-ABC v.5.0: an update to the IMG/Atlas of Biosynthetic Gene Clusters Knowledgebase , 2019, Nucleic Acids Res..

[8]  Kyle R. Conway,et al.  ClusterMine360: a database of microbial PKS/NRPS biosynthesis , 2012, Nucleic Acids Res..

[9]  Roger G. Linington,et al.  MIBiG 2.0: a repository for biosynthetic gene clusters of known function , 2019, Nucleic Acids Res..

[10]  Tilmann Weber,et al.  The evolution of genome mining in microbes - a review. , 2016, Natural product reports.

[11]  Kai Blin,et al.  antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences , 2011, Nucleic Acids Res..

[12]  Brian D. Ondov,et al.  Mash: fast genome and metagenome distance estimation using MinHash , 2015, Genome Biology.

[13]  Tilmann Weber,et al.  In silico tools for the analysis of antibiotic biosynthetic pathways. , 2014, International journal of medical microbiology : IJMM.

[14]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[15]  Kai Blin,et al.  Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters , 2017, Briefings Bioinform..

[16]  Carla S. Jones,et al.  Minimum Information about a Biosynthetic Gene cluster. , 2015, Nature chemical biology.

[17]  S. Lee,et al.  antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline , 2019, Nucleic Acids Res..

[18]  David J Newman,et al.  Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. , 2020, Journal of natural products.

[19]  Kai Blin,et al.  antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers , 2013, Nucleic Acids Res..

[20]  Michael A Fischbach,et al.  Computational approaches to natural product discovery. , 2015, Nature chemical biology.

[21]  Kai Blin,et al.  antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification , 2017, Nucleic Acids Res..

[22]  A. Phillippy,et al.  High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries , 2017, Nature Communications.