Doping concentration dependence of radiance and optical modulation bandwidth in carbon‐doped Ga0.51In0.49P/GaAs light‐emitting diodes grown by gas source molecular beam epitaxy
暂无分享,去创建一个
J. A. Kash | Peter D. Kirchner | D. T. McInturff | J. Kash | F. Cardone | P. Kirchner | D. Mcinturff | F. Cardone | T. J. de Lyon | T. Lyon | M WoodallJerry | R. J. S. Bates | M. WoodallJerry | R. S. Bates
[2] G. Scilla,et al. Use of CCl4 and CHCl3 in gas source molecular beam epitaxy for carbon doping of GaAs and GaxIn1−xP , 1991 .
[3] W. P. Dumke,et al. Optical Transitions Involving Impurities in Semiconductors , 1963 .
[4] H. Casey,et al. Concentration‐dependent absorption and spontaneous emission of heavily doped GaAs , 1976 .
[5] G. Scilla,et al. High carbon doping efficiency of bromomethanes in gas source molecular beam epitaxial growth of GaAs , 1991 .
[6] R. Goodfellow,et al. Wide-bandwidth high-radiance gallium-arsenide light-emitting diodes for fibre-optic communication , 1976 .
[7] J. Heinen,et al. Light-emitting diodes with a modulation bandwidth of more than 1 GHz , 1976 .
[8] M. Konagai,et al. Molecular beam epitaxial growth of GaAs using trimethylgallium as a Ga source , 1984 .
[9] A. Dentai,et al. Power and modulation bandwidth of gaAs-AlGaAs high-radiance LED's for optical communication systems , 1978 .
[10] M. Takeshima. Effect of Auger recombination on laser operation in Ga1−xAlxAs , 1985 .
[11] M. Goorsky,et al. Lattice contraction due to carbon doping of GaAs grown by metalorganic molecular beam epitaxy , 1990 .
[12] A. Haug,et al. Auger recombination in direct-gap semiconductors: band-structure effects , 1983 .