IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia

[1]  M. Nussenzweig,et al.  Origin and development of dendritic cells , 2010, Immunological reviews.

[2]  Clare L. Bennett,et al.  Langerhans Cells Are Required for Efficient Presentation of Topically Applied Hapten to T Cells1 , 2007, The Journal of Immunology.

[3]  N. Romani,et al.  Changing views of the role of Langerhans cells. , 2012, The Journal of investigative dermatology.

[4]  M. Starovasnik,et al.  Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R. , 2012, Structure.

[5]  P. Knolle The Liver as a Lymphoid Organ , 2014 .

[6]  S. Nishikawa,et al.  The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene , 1990, Nature.

[7]  M. Diamond,et al.  The lectin pathway of complement activation contributes to protection from West Nile virus infection. , 2011, Virology.

[8]  M. Mattei,et al.  Identification of Mouse Langerin/CD207 in Langerhans Cells and Some Dendritic Cells of Lymphoid Tissues1 , 2002, The Journal of Immunology.

[9]  M. Shlomchik,et al.  Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. , 2005, Immunity.

[10]  J. Connolly,et al.  Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. , 2007, Immunity.

[11]  S. Itohara,et al.  High-efficiency CAG-FLPe deleter mice in C57BL/6J background. , 2006, Experimental animals.

[12]  R. Steinman,et al.  Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain , 2011, The Journal of experimental medicine.

[13]  A. Enk,et al.  Early events in the induction phase of contact sensitivity. , 1992, The Journal of investigative dermatology.

[14]  S. Shono,et al.  Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice. , 2010, Journal of hepatology.

[15]  R. Steinman,et al.  Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. , 1993, Journal of cell science.

[16]  L. Williams,et al.  Discovery of a Cytokine and Its Receptor by Functional Screening of the Extracellular Proteome , 2008, Science.

[17]  C. Haase,et al.  Immunological mechanisms of contact hypersensitivity in mice , 2012, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[18]  Shalin H. Naik,et al.  Steady-state and inflammatory dendritic-cell development , 2007, Nature Reviews Immunology.

[19]  J. Hamilton Colony-stimulating factors in inflammation and autoimmunity , 2008, Nature Reviews Immunology.

[20]  Clare L. Bennett,et al.  Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity , 2005, The Journal of cell biology.

[21]  M. Diamond,et al.  Caspase 3-Dependent Cell Death of Neurons Contributes to the Pathogenesis of West Nile Virus Encephalitis , 2006, Journal of Virology.

[22]  F. Ginhoux,et al.  Ontogeny and homeostasis of Langerhans cells , 2010, Immunology and cell biology.

[23]  R. Ransohoff,et al.  Heterogeneity of CNS myeloid cells and their roles in neurodegeneration , 2011, Nature Neuroscience.

[24]  D. Kaplan In vivo function of Langerhans cells and dermal dendritic cells. , 2010, Trends in immunology.

[25]  J. Streilein,et al.  High and low doses of haptens dictate whether dermal or epidermal antigen‐presenting cells promote contact hypersensitivity , 1997, European journal of immunology.

[26]  P. Perrin,et al.  Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. , 2005, Immunity.

[27]  R. Steinman,et al.  Flt3 signaling-dependent dendritic cells protect against atherosclerosis. , 2011, Immunity.

[28]  K. Rajewsky,et al.  A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. , 1995, Nucleic acids research.

[29]  M. Diamond,et al.  The Immune Adaptor Molecule SARM Modulates Tumor Necrosis Factor Alpha Production and Microglia Activation in the Brainstem and Restricts West Nile Virus Pathogenesis , 2009, Journal of Virology.

[30]  T. Pierson,et al.  Human Monoclonal Antibodies against West Nile Virus Induced by Natural Infection Neutralize at a Postattachment Step , 2009, Journal of Virology.

[31]  F. Rossi,et al.  Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool , 2011, Nature Neuroscience.

[32]  P. Koebel,et al.  Anatomical Origin of Dendritic Cells Determines Their Life Span in Peripheral Lymph Nodes , 2000, The Journal of Immunology.

[33]  R. Russell,et al.  Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. , 2002, Blood.

[34]  Hongping Dong,et al.  2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members , 2010, Nature.

[35]  R. Fairchild,et al.  T cell populations primed by hapten sensitization in contact sensitivity are distinguished by polarized patterns of cytokine production: interferon gamma-producing (Tc1) effector CD8+ T cells and interleukin (Il) 4/Il-10-producing (Th2) negative regulatory CD4+ T cells , 1996, The Journal of experimental medicine.

[36]  N. Van Rooijen,et al.  Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis , 2008, The Journal of experimental medicine.

[37]  Miriam Merad,et al.  Dendritic cell homeostasis. , 2009, Blood.

[38]  Markus G. Manz,et al.  Development of Monocytes, Macrophages, and Dendritic Cells , 2010, Science.

[39]  K. Hogquist,et al.  Identification of a novel population of Langerin+ dendritic cells , 2007, The Journal of experimental medicine.

[40]  F. Ginhoux,et al.  Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages , 2010, Science.

[41]  M. Giustetto,et al.  Synaptic Pruning by Microglia Is Necessary for Normal Brain Development , 2011, Science.

[42]  L. Williams,et al.  Functional overlap but differential expression of CSF‐1 and IL‐34 in their CSF‐1 receptor‐mediated regulation of myeloid cells , 2010, Journal of leukocyte biology.

[43]  S. Teitelbaum,et al.  Genetic regulation of osteoclast development and function , 2003, Nature Reviews Genetics.

[44]  E. Devilard,et al.  The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells , 2007, The Journal of experimental medicine.

[45]  L. Shultz,et al.  Differentiation of epidermal Langerhans cells in macrophage colony-stimulating-factor-deficient mice homozygous for the osteopetrosis (op) mutation. , 1992, The Journal of investigative dermatology.

[46]  F. Ginhoux,et al.  Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state , 2007, The Journal of experimental medicine.

[47]  R. Steinman,et al.  Identification and expression of mouse Langerin (CD207) in dendritic cells. , 2002, International immunology.

[48]  J. Pollard,et al.  Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. , 1994, Development.

[49]  S. Gordon,et al.  Diversity and plasticity of mononuclear phagocytes , 2011, European journal of immunology.

[50]  S. Gaines,et al.  The Mouse , 2011 .

[51]  F. Ginhoux,et al.  Langerhans cells arise from monocytes in vivo , 2006, Nature Immunology.

[52]  E. Stanley,et al.  Colony-stimulating factor-1 in immunity and inflammation. , 2006, Current opinion in immunology.

[53]  R. Ransohoff,et al.  The myeloid cells of the central nervous system parenchyma , 2010, Nature.

[54]  N. Romani,et al.  Langerhans cells and more: langerin‐expressing dendritic cell subsets in the skin , 2010, Immunological reviews.

[55]  P. Chambon,et al.  Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network , 2009, The Journal of experimental medicine.

[56]  I. Weissman,et al.  Langerhans cells renew in the skin throughout life under steady-state conditions , 2002, Nature Immunology.

[57]  S. Okada,et al.  IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation , 2010, Cell Death and Differentiation.

[58]  Julia M. Lewis,et al.  Resident Skin-specific γδ T Cells Provide Local, Nonredundant Regulation of Cutaneous Inflammation , 2002, The Journal of experimental medicine.

[59]  F. Ginhoux,et al.  Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells , 2008, Nature Reviews Immunology.

[60]  J. Berman,et al.  Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. , 2011, Immunity.