A probabilistic framework of preference discovery from folksonomy corpus

The increasing availability of folksonomy data makes them vital for user profiling approaches to precisely detect user preferences and better understand user interests, so as to render some personalized recommendation or retrieval results. This paper presents a rigorous probabilistic framework to discover user preference from folksonomy data. Furthermore, we incorporate three models into the framework with the corresponding inference methods, expectation-maximization or Gibbs sampling algorithms. The user preference is expressed through topical conditional distributions. Moreover, to demonstrate the versatility of our framework, a recommendation method is introduced to show the possible usage of our framework and evaluate the applicability of the engaged models. The experimental results show that, with the help of the proposed framework, the user preference can be effectively discovered.

[1]  Yong Yu,et al.  Exploring folksonomy for personalized search , 2008, SIGIR '08.

[2]  Christian Bauckhage,et al.  I tag, you tag: translating tags for advanced user models , 2010, WSDM '10.

[3]  Richi Nayak,et al.  Connecting users and items with weighted tags for personalized item recommendations , 2010, HT '10.

[4]  John Riedl,et al.  Tagommenders: connecting users to items through tags , 2009, WWW '09.

[5]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Lei Zhang,et al.  Modeling Ontology of Folksonomy with Latent Semantics of Tags , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[7]  Panagiotis Symeonidis,et al.  A Unified Framework for Providing Recommendations in Social Tagging Systems Based on Ternary Semantic Analysis , 2010, IEEE Transactions on Knowledge and Data Engineering.

[8]  Brian D. Davison,et al.  A probabilistic model for personalized tag prediction , 2010, KDD.

[9]  Takeharu Eda,et al.  The Effectiveness of Latent Semantic Analysis for Building Up a Bottom-up Taxonomy from Folksonomy Tags , 2009, World Wide Web.

[10]  Yi Cai,et al.  Personalized search by tag-based user profile and resource profile in collaborative tagging systems , 2010, CIKM.

[11]  Ciro Cattuto,et al.  Evaluating similarity measures for emergent semantics of social tagging , 2009, WWW '09.

[12]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[13]  Hongfei Lin,et al.  Social annotation in query expansion: a machine learning approach , 2011, SIGIR.

[14]  Valentin Robu,et al.  The complex dynamics of collaborative tagging , 2007, WWW '07.

[15]  Hao Xu,et al.  Tag refinement by regularized LDA , 2009, ACM Multimedia.

[16]  Ronen I. Brafman,et al.  Preference Handling - An Introductory Tutorial , 2009, AI Mag..

[17]  Tom Minka,et al.  Expectation-Propogation for the Generative Aspect Model , 2002, UAI.

[18]  Sourav S. Bhowmick,et al.  Image tag clarity: in search of visual-representative tags for social images , 2009, WSM@MM.

[19]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Indexing , 1999, SIGIR Forum.

[20]  Thomas L. Griffiths,et al.  The Author-Topic Model for Authors and Documents , 2004, UAI.

[21]  Jussara M. Almeida,et al.  Associative tag recommendation exploiting multiple textual features , 2011, SIGIR.

[22]  Eyke Hüllermeier,et al.  Preference Learning: An Introduction , 2010, Preference Learning.