Relict sand wedges suggest a high altitude and cold temperature during the Early Cretaceous in the Ordos Basin, North China

[1]  S. Dong,et al.  Late Mesozoic intracontinental deformation and magmatism in North and NE China in response to multi-plate convergence in NE Asia: An overview and new view , 2022, Tectonophysics.

[2]  Yongqing Liu,et al.  Changes in prevailing surface-paleowinds reveal the atmospheric circulation transition during Early Cretaceous in North China , 2021, Palaeogeography, Palaeoclimatology, Palaeoecology.

[3]  Haijun Song,et al.  Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years , 2021, Earth-Science Reviews.

[4]  Chunlai Zhang,et al.  Spatial heterogeneity of surface sediment grain size and aeolian activity in the gobi desert region of northwest China , 2020 .

[5]  Zhonghe Zhou,et al.  Study on the Jehol Biota: Recent advances and future prospects , 2020, Science China Earth Sciences.

[6]  Chiyang Liu,et al.  Paleogeography reconstruction of a multi-stage modified intra-cratonic basin—a case study from the Jurassic Ordos Basin, Western North China Craton , 2020 .

[7]  Jin Zhang,et al.  Nature of the Eastern Boundary of the Mesozoic Ordos Basin and the Formation of the Lüliangshan Anticline , 2020, The Journal of Geology.

[8]  Robert K. Colwell,et al.  Humboldt’s enigma: What causes global patterns of mountain biodiversity? , 2019, Science.

[9]  Yongqing Liu,et al.  Late Jurassic fluvial–eolian deposits from the Tianchihe Formation, Ningwu–Jingle Basin, Shanxi Province, China , 2019, Journal of Asian Earth Sciences.

[10]  Yiping Zhang,et al.  Tectonic evolution of the western Ordos Basin during the Palaeozoic-Mesozoic time as constrained by detrital zircon ages , 2019 .

[11]  Guo-Li Wu,et al.  Tectonic evolution of early Mesozoic sedimentary basins in the North China block , 2019, Earth-Science Reviews.

[12]  Gang Li,et al.  Cretaceous integrative stratigraphy and timescale of China , 2018, Science China Earth Sciences.

[13]  M. Bateman,et al.  The chronology of Late Pleistocene thermal contraction cracking derived from sand wedge OSL dating in central and southern France , 2018 .

[14]  S. Brassell,et al.  Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes , 2017 .

[15]  Gang Li SEM morphological study of the type species of Ordosestheria Wang, 1984 (Spinicaudata) from Ordos Basin of mid-west China , 2017 .

[16]  Y. Wang,et al.  Vertebrate assemblages of the Jurassic Yanliao Biota and the Early Cretaceous Jehol Biota: Comparisons and implications , 2017 .

[17]  M. Rogov,et al.  Earliest Cretaceous (late Berriasian) glendonites from Northeast Siberia revise the timing of initiation of transient Early Cretaceous cooling in the high latitudes , 2017 .

[18]  Zhiyong Zhang,et al.  Craton destruction and related resources , 2017, International Journal of Earth Sciences.

[19]  Chengshan Wang,et al.  High elevation of Jiaolai Basin during the Late Cretaceous: Implication for the coastal mountains along the East Asian margin , 2016 .

[20]  G. M. Young,et al.  Strongly seasonal Proterozoic glacial climate in low palaeolatitudes: Radically different climate system on the pre-Ediacaran Earth , 2016 .

[21]  Guo-Qiang Zhang,et al.  Fossil coniferous wood from the Early Cretaceous Jehol Biota in western Liaoning, NE China: New material and palaeoclimate implications , 2016 .

[22]  Hong Chen,et al.  Apatite fission-track thermochronological constraints on the pattern of late Mesozoic-Cenozoic uplift and exhumation of the Qinling Orogen, central China , 2015 .

[23]  M. Bateman,et al.  Last glacial dynamics of the Vale of York and North Sea lobes of the British and Irish Ice Sheet. , 2015 .

[24]  Xiang-bo Li,et al.  A short-lived but significant Mongol–Okhotsk collisional orogeny in latest Jurassic–earliest Cretaceous , 2015 .

[25]  Zhonghe Zhou The Jehol Biota, an Early Cretaceous terrestrial Lagerstätte: new discoveries and implications , 2014 .

[26]  W. Fischer,et al.  New constraints on equatorial temperatures during a Late Neoproterozoic snowball Earth glaciation , 2014 .

[27]  H. Zhan,et al.  A new sand-wedge-forming mechanism in an extra-arid area , 2014 .

[28]  Bainian Sun,et al.  Paleo-CO2 variation trends and the Cretaceous greenhouse climate , 2014 .

[29]  B. Haq Cretaceous eustasy revisited , 2014 .

[30]  M. Stein,et al.  From dust to varnish: Geochemical constraints on rock varnish formation in the Negev Desert, Israel , 2014 .

[31]  J. Elsen,et al.  Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation , 2014 .

[32]  E. Hiatt,et al.  Secular changes in sedimentation systems and sequence stratigraphy , 2013 .

[33]  M. Philippe,et al.  Systematics of a palaeoecologically significant boreal Mesozoic fossil wood genus, Xenoxylon Gothan , 2013 .

[34]  H. Christiansen,et al.  Ice‐ and Soil‐Wedge Dynamics in the Kapp Linné Area, Svalbard, Investigated by Two‐ and Three‐Dimensional GPR and Ground Thermal and Acceleration Regimes , 2013 .

[35]  Vitor V. Lopes,et al.  Aeolian microtextures in silica spheres induced in a wind tunnel experiment: Comparison with aeolian quartz , 2013 .

[36]  Xixi Zhao,et al.  A late Mesozoic high plateau in eastern China: Evidence from basalt vesicular paleoaltimetry , 2012 .

[37]  M. Zhai Cratonization and the Ancient North China Continent: A summary and review , 2011 .

[38]  Yunpeng Dong,et al.  Tectonic evolution of the Qinling orogen, China: Review and synthesis , 2011 .

[39]  G. Owen,et al.  Identifying triggers for liquefaction-induced soft-sediment deformation in sands , 2011 .

[40]  E. Buffetaut,et al.  Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates , 2011, Proceedings of the National Academy of Sciences.

[41]  B. Hallet,et al.  Micro-relief development in polygonal patterned ground in the Dry Valleys of Antarctica , 2011, Quaternary Research.

[42]  P. Bown,et al.  High sea-surface temperatures during the Early Cretaceous Epoch , 2011 .

[43]  Y. Wang,et al.  Vertebrate diversity of the Jehol Biota as compared with other lagerstätten , 2010 .

[44]  M. Philippe,et al.  Structure and diversity of the Mesozoic wood genus Xenoxylon in Far East Asia: implications for terrestrial palaeoclimates , 2009 .

[45]  G. Soreghan,et al.  Polygonal cracking in coarse clastics records cold temperatures in the equatorial Fountain Formation (Pennsylvanian–Permian, Colorado) , 2008 .

[46]  W. Hay Evolving ideas about the Cretaceous climate and ocean circulation , 2008 .

[47]  H. French,et al.  Water escape fissures resembling ice-wedge casts in Late Quaternay subaquesous outwash near St. Lazare Québec, Canada , 2008 .

[48]  Jeffrey Park,et al.  Climate sensitivity constrained by CO2 concentrations over the past 420 million years , 2007, Nature.

[49]  L. Sabato,et al.  Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the SantʻArcangelo Basin (Southern Italy): Seismic shock vs. overloading , 2007 .

[50]  C. Scherer,et al.  Stratigraphy and facies architecture of the fluvial aeolian lacustrine Sergi Formation (Upper Jurassic), Recôncavo Basin, Brazil , 2007 .

[51]  N. Thiagarajan,et al.  Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition , 2004 .

[52]  L. Frakes,et al.  First known Cretaceous glaciation: Livingston Tillite Member of the Cadna‐owie Formation, South Australia , 2003 .

[53]  J. R. Mackay,et al.  Thermally induced movements in ice-wedge polygons, western arctic coast: a long-term study , 2002 .

[54]  L. Frakes,et al.  Early Cretaceous Ice Rafting and Climate Zonation in Australia , 1995 .

[55]  L. Frakes,et al.  A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous , 1988, Nature.

[56]  D. Loope,et al.  Giant desiccation fissures filled with calcareous eolian sand, Hermosa Formation (Pennsylvanian), southeastern Utah , 1988 .

[57]  J. Goździk,et al.  Ice wedges: growth, thaw transformation, and palaeoenvironmental significance , 1988 .

[58]  G. E. Williams Precambrian permafrost horizons as indicators of palaeoclimate , 1986 .

[59]  R. F. Black Pseudo-Ice-Wedge Casts of Connecticut, Northeastern United States , 1983, Quaternary Research.

[60]  T. Oberlander,et al.  Microbial Origin of Desert Varnish , 1981, Science.

[61]  A. L. Washburn Permafrost features as evidence of climatic change , 1980 .

[62]  R. E. Hunter Basic types of stratification in small eolian dunes , 1977 .

[63]  R. F. Black,et al.  Periglacial Features Indicative of Permafrost: Ice and Soil Wedges , 1976, Quaternary Research.

[64]  T. Péwé Sand-wedge polygons (tesselations) in the McMurdo Sound region, Antarctica; a progress report , 1959 .