Synchronous vibration parameters identification by tip timing measurements

Abstract The Blade Tip Timing (BTT) measurement system is a technique to measure vibration parameters of a rotating bladed disk. In particular for synchronous vibrations the BTT provides signals versus the rotation speed of the disk starting from the measurement of the time of arrival (TOA) of each blade under the tip timing probes. The signals must be post processed in order to obtain the interesting parameters of each blade vibration. The paper presents a method to extract the main parameters (amplitude and frequency) in resonance condition from the tip timing measurements. The proposed method is a revision of the already existing well known Two-Parameter Plot (2PP) method which requires a minimum of two probes. Improvements to the existing 2PP method are here suggested mainly in the part of engine order identification. The proposed method is then applied to the BTT measured signals coming from a rotating bladed disk excited at different engine orders. At the same time on the disk the vibration of one blade was detected by strain gauges. The strain gauges were calibrated and they provide the reference values of the vibration parameters. The vibration parameters derived by the proposed method are in agreement with those obtained by the strain gauges methodology.