MadAnalysis 5, a user-friendly framework for collider phenomenology

Abstract We present MadAnalysis  5, a new framework for phenomenological investigations at particle colliders. Based on a C ++ kernel, this program allows us to efficiently perform, in a straightforward and user-friendly fashion, sophisticated physics analyses of event files such as those generated by a large class of Monte Carlo event generators. MadAnalysis  5 comes with two modes of running. The first one, easier to handle, uses the strengths of a powerful Python  interface in order to implement physics analyses by means of a set of intuitive commands. The second one requires one to implement the analyses in the C ++ programming language, directly within the core of the analysis framework. This opens unlimited possibilities concerning the level of complexity which can be reached, being only limited by the programming skills and the originality of the user. Program summary Program title: MadAnalysis 5 Catalogue identifier: AENO_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENO_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Permission to use, copy, modify and distribute this program is granted under the terms of the GNU General Public License. No. of lines in distributed program, including test data, etc.: 31087 No. of bytes in distributed program, including test data, etc.: 399105 Distribution format: tar.gz Programming language: PYTHON, C++. Computer: All platforms on which Python version 2.7, Root version 5.27 and the g++ compiler are available. Compatibility with newer versions of these programs is also ensured. However, the Python version must be below version 3.0. Operating system: Unix, Linux and Mac OS operating systems on which the above-mentioned versions of Python and Root, as well as g++, are available. Classification: 11.1. External routines: ROOT ( http://root.cern.ch/drupal/ ) Nature of problem: Implementing sophisticated phenomenological analyses in high-energy physics through a flexible, efficient and straightforward fashion, starting from event files such as those produced by Monte Carlo event generators. The event files can have been matched or not to parton-showering and can have been processed or not by a (fast) simulation of a detector. According to the sophistication level of the event files (parton-level, hadron-level, reconstructed-level), one must note that several input formats are possible. Solution method: We implement an interface allowing the production of predefined as well as user-defined histograms for a large class of kinematical distributions after applying a set of event selection cuts specified by the user. This therefore allows us to devise robust and novel search strategies for collider experiments, such as those currently running at the Large Hadron Collider at CERN, in a very efficient way. Restrictions: Unsupported event file format. Unusual features: The code is fully based on object representations for events, particles, reconstructed objects and cuts, which facilitates the implementation of an analysis. Running time: It depends on the purposes of the user and on the number of events to process. It varies from a few seconds to the order of the minute for several millions of events.

[1]  Stephen Mrenna,et al.  Matching Matrix Elements and Parton Showers with HERWIG and PYTHIA , 2004 .

[2]  T. Gleisberg,et al.  Next-to-leading order QCD predictions for Z,gamma^*+3-Jet distributions at the tevatron. , 2010, 1004.1659.

[3]  F. Krauss,et al.  QCD Matrix Elements + Parton Showers , 2001, hep-ph/0109231.

[4]  P. Bartalini,et al.  A standard format for Les Houches Event Files , 2007, Comput. Phys. Commun..

[5]  S. Moretti,et al.  HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes) , 2001 .

[6]  M. Worek,et al.  Polarizing the dipoles , 2009, 0905.0883.

[7]  Xin Wu,et al.  Precision Electroweak Measurements at ATLAS and CMS , 2006 .

[8]  R. Pittau,et al.  Automated one-loop calculations: a proof of concept , 2009, 0903.4665.

[9]  J. Huston,et al.  New generation of parton distributions with uncertainties from global QCD analysis , 2002, hep-ph/0201195.

[10]  R. Pittau,et al.  ALPGEN, a generator for hard multiparton processes in hadronic collisions , 2002, hep-ph/0206293.

[11]  F. Siegert,et al.  Event generation with SHERPA 1.1 , 2008, 0811.4622.

[12]  Alan D. Martin,et al.  Review of Particle Physics , 2014 .

[13]  D Maître,et al.  Precise predictions for W+4-jet production at the large hadron collider. , 2010, Physical review letters.

[14]  Costas G. Papadopoulos,et al.  CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes , 2007, 0711.3596.

[15]  J. Kanzaki,et al.  Generic User Process Interface for Event Generators , 2001 .

[16]  A. Sherstnev,et al.  CompHEP 4.4 - Automatic Computations from Lagrangians to Events , 2004, hep-ph/0403113.

[17]  Paul Koerber,et al.  The non-abelian Born-Infeld action through order $\alpha'{}^3$ , 2001 .

[18]  Matteo Cacciari,et al.  Fastjet:. Dispelling the N 3 Myth for the k t Jet-Finder , 2007 .

[19]  G. Zanderighi,et al.  Recent theoretical progress in perturbative QCD , 2008, 0810.3524.

[20]  Claude Duhr,et al.  New Developments in MadGraph/MadEvent , 2008, 0809.2410.

[21]  Hartmute Plothow-Besch,et al.  PDFLIB: a library of all available parton density functions of the nucleon, the pion and the photon and the corresponding αS calculations , 1993 .

[22]  William Link,et al.  ALOHA: Automatic libraries of helicity amplitudes for Feynman diagram computations , 2011, Comput. Phys. Commun..

[23]  Thorsten Ohl,et al.  O’Mega: An optimizing matrix element generator , 2000, hep-ph/0102195.

[24]  F. Maltoni,et al.  MadEvent: Automatic event generation with MadGraph , 2002, hep-ph/0208156.

[25]  N. Greiner,et al.  Automated one-loop calculations with GoSam , 2011, 1111.2034.

[26]  Tim Stelzer,et al.  MadGraph/MadEvent v4: The New Web Generation , 2007, 0706.2334.

[27]  Claude Duhr,et al.  UFO - The Universal FeynRules Output , 2011, Comput. Phys. Commun..

[28]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[29]  Claude Duhr,et al.  A superspace module for the FeynRules package , 2011, Comput. Phys. Commun..

[30]  Tim Stelzer,et al.  Automation of next-to-leading order computations in QCD: the FKS subtraction , 2009, 0908.4272.

[31]  T. Stelzer,et al.  Automatic generation of tree level helicity amplitudes , 1994, hep-ph/9401258.

[32]  Claude Duhr,et al.  Introducing an interface between FeynRules and WHIZARD , 2012 .

[33]  Claude Duhr,et al.  FeynRules - Feynman rules made easy , 2008, Comput. Phys. Commun..

[34]  Giulia Zanderighi,et al.  Generalized unitarity at work: First NLO QCD results for hadronic W+3 jet production , 2009, 0901.4101.

[35]  A. Giammanco,et al.  Top quark studies and perspectives with CMS , 2005 .

[36]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[37]  V. Lemaître,et al.  DELPHES, a framework for fast simulation of a generic collider experiment , 2009, 0903.2225.

[38]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[39]  Claude Duhr,et al.  A comprehensive approach to new physics simulations , 2009, 0906.2474.

[40]  F. Krauss,et al.  Matrix elements and parton showers in hadronic interactions. , 2002, hep-ph/0205283.

[41]  T. Gleisberg,et al.  Comix, a new matrix element generator , 2008, 0808.3674.

[42]  Frank Ferrari Large N and double scaling limits in two dimensions , 2002 .

[43]  Alexander Pukhov,et al.  CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages , 2004, hep-ph/0412191.

[44]  F Cascioli,et al.  Scattering amplitudes with open loops. , 2011, Physical review letters.

[45]  S. Moch,et al.  Automating dipole subtraction , 2008, 0807.3701.

[46]  M. Cacciari,et al.  Dispelling the N3 myth for the kt jet-finder , 2005, hep-ph/0512210.

[47]  K. Lassila-Perini,et al.  The QCD/SM working group: Summary report , 2002, hep-ph/0204316.

[48]  Anna Zilnyk A brief introduction to… , 2011 .

[49]  Benjamin Fuks,et al.  BEYOND THE MINIMAL SUPERSYMMETRIC STANDARD MODEL: FROM THEORY TO PHENOMENOLOGY , 2012, 1202.4769.

[50]  Peter Skands,et al.  A brief introduction to PYTHIA 8.1 , 2007, Comput. Phys. Commun..

[51]  Matt Dobbs,et al.  The HepMC C++ Monte Carlo event record for High Energy Physics ? ? Available via the following web-a , 2001 .

[52]  Tanju Gleisberg,et al.  Automating dipole subtraction for QCD NLO calculations , 2007, 0709.2881.

[53]  M. Mangano,et al.  Matching matrix elements and shower evolution for top-pair production in hadronic collisions , 2006, hep-ph/0611129.

[54]  Mikhail Dubinin,et al.  CompHEP - a package for evaluation of Feynman diagrams and integration over multi-particle phase space. User's manual for version 33 , 1999 .

[55]  M. Gigg,et al.  Herwig++ physics and manual , 2008, 0803.0883.

[56]  Michael H. Seymour,et al.  TeVJet: A general framework for the calculation of jet observables in NLO QCD , 2008, 0803.2231.

[57]  J. Winter,et al.  Event generation with , 2009 .

[58]  D Maître,et al.  Precise predictions for w+3 jet production at hadron colliders. , 2009, Physical review letters.

[59]  W. Kilian,et al.  WHIZARD—simulating multi-particle processes at LHC and ILC , 2007, 0708.4233.

[60]  Alessandro Cafarella,et al.  Helac-Phegas: A generator for all parton level processes , 2007, Comput. Phys. Commun..

[61]  Fons Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[62]  Rikkert Frederix,et al.  MadDipole: automation of the dipole subtraction method in MadGraph/MadEvent , 2008, 0808.2128.

[63]  A. V. Semenov,et al.  LanHEP - a package for the automatic generation of Feynman rules in field theory. Version 3.0 , 2002, Comput. Phys. Commun..