The axiomatic characterizations of majority voting and scoring rules

The Arrovian framework of social choice theory is flexible enough to allow for a precise axiomatic study of the voting rules that are used in political elections, sport competitions or expert committees, etc. such as the majority rule or the scoring rules. The objective of this paper is to give an account of the results that have been obtained in this direction since 1951. We first present some basic conditions for a collective decision rule to be democratic. Next, we expound in detail two fundamental results: the characterization of the majority rule by May, and the axiomatization of the family of scoring rules by Young. Afterwards, using these results, some specific scoring rules, such as the plurality vote or the Borda count, have also been characterized. Some remarks on other directions of research and open issues conclude the paper.

[1]  N. Schofield The Geometry of Voting , 1983 .

[2]  H. P. Young,et al.  An axiomatization of Borda's rule , 1974 .

[3]  E. Maskin The Theory of Implementation in Nash Equilibrium: A Survey , 1983 .

[4]  J. H. Smith AGGREGATION OF PREFERENCES WITH VARIABLE ELECTORATE , 1973 .

[5]  K. Fine,et al.  Social Choice and Individual Rankings II , 1974 .

[6]  Jean-François Laslier Solutions de tournois : un spicilège , 1996 .

[7]  Donald G. Saari,et al.  The Copeland method: I.: Relationships and the dictionary , 1996 .

[8]  D. Saari Geometry of voting , 1994 .

[9]  Jean-François Laslier,et al.  Tournament Solutions And Majority Voting , 1997 .

[10]  H. Young Social Choice Scoring Functions , 1975 .

[11]  Donald G. Saari,et al.  A geometric examination of Kemeny's rule , 2000, Soc. Choice Welf..

[12]  H. Young,et al.  A Consistent Extension of Condorcet’s Election Principle , 1978 .

[13]  Peter Gärdenfors Positionalist voting functions , 1973 .

[14]  K. Arrow Social Choice and Individual Values , 1951 .

[15]  S. Ching A Simple Characterization of Plurality Rule , 1996 .

[16]  J. Richelson A comparative analysis of social choice functions, IV , 1978 .

[17]  Kenneth O. May,et al.  A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision , 1952 .

[18]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .

[19]  H. P. Young,et al.  A Note on Preference Aggregation , 1974 .

[20]  Salvador Barberà,et al.  Implementability via protective equilibria , 1982 .

[21]  Jeffrey T. Richelson,et al.  Running off empty: Run-off point systems , 1980 .

[22]  Donald G. Saari,et al.  A dictionary for voting paradoxes , 1989 .

[23]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[24]  D. G. Saari,et al.  Consistency of decision processes , 1990 .

[25]  Ariel Rubinstein,et al.  A further characterization of Borda ranking method , 1981 .

[26]  D. Lepelley Une caractérisation du vote à la majorité simple , 1992 .

[27]  V Gehrlein William,et al.  CONDORCET'S PARADOX AND THE CONDORCET EFFICIENCY OF VOTING RULES. , 1997 .

[28]  Peter C. Fishburn,et al.  Borda's rule, positional voting, and Condorcet's simple majority principle , 1976 .

[29]  F. Roberts Characterizations of the plurality function , 1991 .

[30]  Pavel Yu. Chebotarev,et al.  Characterizations of scoring methodsfor preference aggregation , 1998, Ann. Oper. Res..

[31]  P. Fishburn The Theory Of Social Choice , 1973 .

[32]  Donald G. Saari,et al.  Copeland Method II: Manipulation, Monotonicity, and Paradoxes☆ , 1997 .

[33]  Peter C. Fishburn,et al.  Axioms for approval voting: Direct proof , 1978 .

[34]  D. Saari,et al.  The Copeland method , 1996 .

[35]  H. Nurmi Comparing Voting Systems , 1987 .

[36]  H. Moulin Axioms of Cooperative Decision Making , 1988 .

[37]  P. Fishburn Condorcet Social Choice Functions , 1977 .

[38]  Murat R. Sertel,et al.  Characterizing approval voting , 1988 .

[39]  D. J Hartfiel,et al.  A characterization result for the plurality rule , 1978 .

[40]  Roger B. Myerson,et al.  Axiomatic derivation of scoring rules without the ordering assumption , 1993 .

[41]  Dominique Henriet,et al.  The Copeland choice function an axiomatic characterization , 1985 .

[42]  David C. Mcgarvey A THEOREMI ON THE CONSTRUCTION OF VOTING PARADOXES , 1953 .

[43]  Donald G. Saari,et al.  The Borda dictionary , 1990 .

[44]  D. Black The theory of committees and elections , 1959 .