[Small animal MRI: clinical MRI as an interface to basic biomedical research].

The demand for highly resolved small animal MRI for the purpose of biomedical research has increased constantly. Dedicated small animal MRI scanners working at ultra high field strengths from 4.7 to 7.0 T and even above are MRI at its best. However, using high resolution RF coils in clinical scanners up to 3.0 T, small animal MRI can achieve highly resolved images showing excellent tissue contrast. In fact, in abundant experimental studies, clinical MRI is used for small animal imaging. Mostly clinical RF coils in the single-loop design are applied. In addition, custom-built RF coils and even gradient inserts are used in a clinical scanner. For the reduction of moving artifacts, special MRI-compatible animal ECG und respiration devices are available. In conclusion, clinical devices offer broad availability, are less expense in combination with good imaging performance and provide a translational nature of imaging results.

[1]  Ronald M Peshock,et al.  Magnetic resonance imaging accurately estimates LV mass in a transgenic mouse model of cardiac hypertrophy. , 1998, American journal of physiology. Heart and circulatory physiology.

[2]  D. Holaday,et al.  Resistance of Isoflurane to Biotransformation in Man , 1975, Anesthesiology.

[3]  Jaime F Mata,et al.  Left ventricular remodeling subsequent to reperfused myocardial infarction: evaluation of a rat model using cardiac magnetic resonance imaging. , 2002, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[4]  Chris Heyn,et al.  In vivo magnetic resonance imaging of single cells in mouse brain with optical validation , 2006, Magnetic resonance in medicine.

[5]  Brian M Dale,et al.  Abdominal magnetic resonance imaging at 3.0 T what is the ultimate gain in signal-to-noise ratio? , 2006, Academic radiology.

[6]  G. Adam,et al.  In vivo magnetic resonance imaging of iron oxide–labeled, arterially‐injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: Detection and monitoring at 3T , 2007, Journal of magnetic resonance imaging : JMRI.

[7]  R. Herfkens,et al.  In vivo imaging of the rat anatomy with nuclear magnetic resonance. , 1980, Radiology.

[8]  J. Grimm,et al.  Molekulare Bildgebung: Stand der Forschung , 2005 .

[9]  K. Rossmann Point spread-function, line spread-function, and modulation transfer function. Tools for the study of imaging systems. , 1969, Radiology.

[10]  C D Claussen,et al.  Aptamer-based isolation and subsequent imaging of mesenchymal stem cells in ischemic myocard by magnetic resonance imaging. , 2007, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[11]  R. Turner,et al.  Gradient coil design: a review of methods. , 1993, Magnetic resonance imaging.

[12]  R. Fiel,et al.  MR imaging of normal rat brain at 0.35 T and correlated histology , 1991, Journal of magnetic resonance imaging : JMRI.

[13]  N. Bresolin,et al.  Autologous Transplantation of Muscle-Derived CD133+ Stem Cells in Duchenne Muscle Patients , 2007, Cell transplantation.

[14]  Peter M. Jakob,et al.  In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging , 2005, NeuroImage.

[15]  Roland Felix,et al.  The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma , 2006, Journal of Neuro-Oncology.

[16]  Anja C S Brau,et al.  Cine magnetic resonance microscopy of the rat heart using cardiorespiratory‐synchronous projection reconstruction , 2004, Journal of magnetic resonance imaging : JMRI.

[17]  S. Karlik,et al.  Iron‐oxide labeling of hematogenous macrophages in a model of experimental autoimmune encephalomyelitis and the contribution to signal loss in fast imaging employing steady state acquisition (FIESTA) images , 2007, Journal of magnetic resonance imaging : JMRI.

[18]  B. Rosen,et al.  Regional sensitivity and coupling of BOLD and CBV changes during stimulation of rat brain , 2001, Magnetic resonance in medicine.

[19]  P. Barker,et al.  Single‐voxel proton MRS of the human brain at 1.5T and 3.0T , 2001, Magnetic resonance in medicine.

[20]  A. Luciani,et al.  In vivo imaging of transplanted hepatocytes with a 1.5-T clinical MRI system—initial experience in mice , 2007, European Radiology.

[21]  D. Beyersdorff,et al.  Differentiation of prostate cancer from normal prostate tissue in an animal model: conventional MRI and dynamic contrast-enhanced MRI. , 2005, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[22]  D. Ballon,et al.  In vivo multiple‐mouse imaging at 1.5 T , 2003, Magnetic resonance in medicine.

[23]  Anna Moore,et al.  In vivo magnetic resonance imaging of transgene expression , 2000, Nature Medicine.

[24]  Michael E Phelps,et al.  Impact of animal handling on the results of 18F-FDG PET studies in mice. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[25]  M J Welch,et al.  Small animal imaging: current technology and perspectives for oncological imaging , 2002 .

[26]  M. Bock,et al.  High‐resolution three‐dimensional MR angiography of rodent tumors: Morphologic characterization of intratumoral vasculature , 2003, Journal of magnetic resonance imaging : JMRI.

[27]  W. Edelstein,et al.  The intrinsic signal‐to‐noise ratio in NMR imaging , 1986, Magnetic resonance in medicine.

[28]  Martin G Pomper,et al.  Small animal imaging in drug development. , 2005, Current pharmaceutical design.

[29]  R Mark Henkelman,et al.  Multiple‐mouse MRI , 2003, Magnetic resonance in medicine.

[30]  Brian K Rutt,et al.  In vivo MRI of cancer cell fate at the single‐cell level in a mouse model of breast cancer metastasis to the brain , 2006, Magnetic resonance in medicine.

[31]  Asymmetric single‐turn solenoid for MRI of the wrist , 1993, Magnetic resonance in medicine.

[32]  Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. , 2002, Circulation.

[33]  J M Schakenraad,et al.  Magnetic resonance imaging using a clinical whole body system: an introduction to a useful technique in small animal experiments , 1992, Laboratory animals.

[34]  J. Bacri,et al.  In vivo cellular imaging of magnetically labeled hybridomas in the spleen with a 1.5‐T clinical MRI system , 2004 .

[35]  P. Foster,et al.  Cellular Imaging of Inflammation after Experimental Spinal Cord Injury , 2005, Molecular imaging.

[36]  Alan P. Koretsky,et al.  Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain , 2006, NeuroImage.

[37]  M. Béhé,et al.  Kombinierte radiologische und nuklearmedizinische Bildgebung in Tierexperimenten: Einberblickber die aktuellen Mçglichkeiten Combination of Radiological And Nuclear Medical Imaging in Animals: An Overview About the Today's Possibilties , 2007 .

[38]  J. Gore,et al.  Measurement of the point spread function in MRI using constant time imaging , 1997, Magnetic resonance in medicine.

[39]  P. Foster,et al.  Cellular imaging at 1.5 T: detecting cells in neuroinflammation using active labeling with superparamagnetic iron oxide. , 2004, Molecular imaging.

[40]  Jonathan P. Dyke,et al.  Preclinical evaluation of tumor microvascular response to a novel antiangiogenic/antitumor agent RO0281501 by dynamic contrast-enhanced MRI at 1.5 T , 2006, Molecular Cancer Therapeutics.

[41]  Maximilian F. Reiser,et al.  High-Resolution Whole-Body Magnetic Resonance Imaging Applications at 1.5 and 3 Tesla: A Comparative Study , 2007, Investigative radiology.

[42]  Sebastian Kozerke,et al.  High-Resolution Complementary Spatial Modulation of Magnetization (CSPAMM) Rat Heart Tagging on a 1.5 Tesla Clinical Magnetic Resonance System: A Preliminary Feasibility Study , 2007, Investigative radiology.

[43]  H. Möhwald,et al.  Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)-block-poly(glutamic acid). , 2006, Langmuir : the ACS journal of surfaces and colloids.

[44]  L. L. Cook,et al.  Pathology‐guided MR analysis of acute and chronic experimental allergic encephalomyelitis spinal cord lesions at 1.5T , 2005, Journal of magnetic resonance imaging : JMRI.

[45]  T. Button,et al.  Small animal MRI at 0.35 Tesla: growth and morphology of intra-organ murine tumors. , 1990, Magnetic resonance imaging.

[46]  H. Amthauer,et al.  An Orthotopic Model of Pancreatic Somatostatin Receptor (SSTR)-Positive Tumors Allows Bimodal Imaging Studies Using 3T MRI and Animal PET-Based Molecular Imaging of SSTR Expression , 2007, Neuroendocrinology.

[47]  J. V. van Engelshoven,et al.  Dynamic contrast-enhanced magnetic resonance imaging at 1.5 Tesla with gadopentetate dimeglumine to assess the angiostatic effects of anginex in mice. , 2004, European journal of cancer.

[48]  Natalie M. Zahr,et al.  In vivo fiber tracking in the rat brain on a clinical 3T MRI system using a high strength insert gradient coil , 2007, NeuroImage.

[49]  R Weissleder,et al.  Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. , 2000, Radiology.

[50]  R. Fiel,et al.  Magnetic resonance imaging and histopathology of hydronephrosis in the rat. , 1991, Magnetic resonance imaging.

[51]  H. Schild,et al.  Klinische Hochfeld-MRT , 2005 .

[52]  P. Bottomley In vivo tumor discrimination in a rat by proton nuclear magnetic resonance imaging. , 1979, Cancer research.

[53]  S. Ulmer,et al.  Analysis of mouse brain using a clinical 1.5 T scanner and a standard small loop surface coil , 2006, Brain Research.

[54]  Matt A Bernstein,et al.  Imaging artifacts at 3.0T , 2006, Journal of magnetic resonance imaging : JMRI.

[55]  Hervé Saint-Jalmes,et al.  Small-animal MRI: signal-to-noise ratio comparison at 7 and 1.5 T with multiple-animal acquisition strategies , 2006, Magnetic Resonance Materials in Physics, Biology and Medicine.