Discriminative Relational Topic Models

Relational topic models (RTMs) provide a probabilistic generative process to describe both the link structure and document contents for document networks, and they have shown promise on predicting network structures and discovering latent topic representations. However, existing RTMs have limitations in both the restricted model expressiveness and incapability of dealing with imbalanced network data. To expand the scope and improve the inference accuracy of RTMs, this paper presents three extensions: 1) unlike the common link likelihood with a diagonal weight matrix that allows the-same-topic interactions only, we generalize it to use a full weight matrix that captures all pairwise topic interactions and is applicable to asymmetric networks; 2) instead of doing standard Bayesian inference, we perform regularized Bayesian inference (RegBayes) with a regularization parameter to deal with the imbalanced link structure issue in real networks and improve the discriminative ability of learned latent representations; and 3) instead of doing variational approximation with strict mean-field assumptions, we present collapsed Gibbs sampling algorithms for the generalized relational topic models by exploring data augmentation without making restricting assumptions. Under the generic RegBayes framework, we carefully investigate two popular discriminative loss functions, namely, the logistic log-loss and the max-margin hinge loss. Experimental results on several real network datasets demonstrate the significance of these extensions on improving prediction performance.

[1]  Ronald de Wolf,et al.  Least Generalizations and Greatest Specializations of Sets of Clauses , 1996, J. Artif. Intell. Res..

[2]  Ning Chen,et al.  Gibbs Max-Margin Topic Models with Fast Sampling Algorithms , 2013, ICML.

[3]  Bo Zhang,et al.  Improved Bayesian Logistic Supervised Topic Models with Data Augmentation , 2013, ACL.

[4]  Steffen Bickel,et al.  Unsupervised prediction of citation influences , 2007, ICML '07.

[5]  W. R. Schucany,et al.  Generating Random Variates Using Transformations with Multiple Roots , 1976 .

[6]  Francesco Bergadano,et al.  The Difficulties of Learning Logic Programs with Cut , 1993, J. Artif. Intell. Res..

[7]  Michael P. Wellman,et al.  Multiagent Reinforcement Learning: Theoretical Framework and an Algorithm , 1998, ICML.

[8]  Ning Chen,et al.  Bayesian inference with posterior regularization and applications to infinite latent SVMs , 2012, J. Mach. Learn. Res..

[9]  Ramesh Nallapati,et al.  Link-PLSA-LDA: A New Unsupervised Model for Topics and Influence of Blogs , 2021, ICWSM.

[10]  Lise Getoor,et al.  Collective Classification in Network Data , 2008, AI Mag..

[11]  A. George,et al.  Parallel Cholesky factorization on a shared-memory multiprocessor. Final report, 1 October 1986-30 September 1987 , 1986 .

[12]  Francis R. Bach,et al.  Online Learning for Latent Dirichlet Allocation , 2010, NIPS.

[13]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[14]  Tom M. Mitchell,et al.  Learning to Extract Symbolic Knowledge from the World Wide Web , 1998, AAAI/IAAI.

[15]  David M. Blei,et al.  Hierarchical relational models for document networks , 2009, 0909.4331.

[16]  William W. Cohen,et al.  Block-LDA: Jointly Modeling Entity-Annotated Text and Entity-Entity Links , 2014, Handbook of Mixed Membership Models and Their Applications.

[17]  Alexander J. Smola,et al.  An architecture for parallel topic models , 2010, Proc. VLDB Endow..

[18]  Ramesh Nallapati,et al.  Joint latent topic models for text and citations , 2008, KDD.

[19]  Nitesh V. Chawla,et al.  New perspectives and methods in link prediction , 2010, KDD.

[20]  Edoardo M. Airoldi,et al.  A Survey of Statistical Network Models , 2009, Found. Trends Mach. Learn..

[21]  Yan Liu,et al.  Topic-link LDA: joint models of topic and author community , 2009, ICML '09.

[22]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[23]  James G. Scott,et al.  Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables , 2012, 1205.0310.

[24]  J. Urgen Schmidhuber,et al.  Learning Factorial Codes by Predictability Minimization , 1992, Neural Computation.

[25]  Peter D. Hoff,et al.  Modeling homophily and stochastic equivalence in symmetric relational data , 2007, NIPS.

[26]  Andrew McCallum,et al.  Automating the Construction of Internet Portals with Machine Learning , 2000, Information Retrieval.

[27]  Ning Chen,et al.  Infinite Latent SVM for Classification and Multi-task Learning , 2011, NIPS.

[28]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[29]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Mohammad Al Hasan,et al.  Link prediction using supervised learning , 2006 .

[31]  Ning Chen,et al.  Generalized Relational Topic Models with Data Augmentation , 2013, IJCAI.

[32]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. J. Strauss,et al.  Pseudolikelihood Estimation for Social Networks , 1990 .

[34]  Michal Rosen-Zvi,et al.  Latent Topic Models for Hypertext , 2008, UAI.

[35]  Stephen Kwek,et al.  Applying Support Vector Machines to Imbalanced Datasets , 2004, ECML.

[36]  William W. Cohen,et al.  Block-LDA: Jointly Modeling Entity-Annotated Text and Entity-Entity Links , 2014, Handbook of Mixed Membership Models and Their Applications.

[37]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[38]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[39]  David M. Blei,et al.  Relational Topic Models for Document Networks , 2009, AISTATS.

[40]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[41]  Lorenzo Rosasco,et al.  Are Loss Functions All the Same? , 2004, Neural Computation.

[42]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[43]  Jun Zhu,et al.  Max-Margin Nonparametric Latent Feature Models for Link Prediction , 2012, ICML.

[44]  David A. McAllester PAC-Bayesian Stochastic Model Selection , 2003, Machine Learning.

[45]  Xiao-Li Meng,et al.  The Art of Data Augmentation , 2001 .

[46]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[47]  Jure Leskovec,et al.  Supervised random walks: predicting and recommending links in social networks , 2010, WSDM '11.

[48]  Nicholas G. Polson,et al.  Data augmentation for support vector machines , 2011 .

[49]  François Laviolette,et al.  PAC-Bayesian learning of linear classifiers , 2009, ICML '09.

[50]  Thomas L. Griffiths,et al.  Nonparametric Latent Feature Models for Link Prediction , 2009, NIPS.