CU-CAS-99-06 CENTER FOR AEROSPACE STRUCTURES PARTITIONED ANALYSIS OF COUPLED MECHANICAL SYSTEMS by

This is a tutorial article that reviews the use of partitioned analysis procedures for the analysis of coupled dynamical systems. Attention is focused on the computational simulation of systems in which a structure is a major component. Important applications in that class are provided by thermomechanics, fluid-structure interaction and control-structure interaction. In the partitioned solution approach, systems are spatially decomposed into partitions. This decomposition is driven by physical or computational considerations. The solution is separately advanced in time over each partition. Interaction effects are accounted for by transmission and synchronization of coupled state variables. Recent developments in the use of this approach for multilevel decomposition aimed at massively parallel computation are discussed.

[1]  Carlos A. Felippa,et al.  A variational principle for the formulation of partitioned structural systems , 2000 .

[2]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[3]  W. Belvin,et al.  Helicopter dynamic stall suppression using piezoelectric active fiber composite rotor blades , 1998 .

[4]  Charbel Farhat,et al.  Higher-Order Subiteration-Free Staggered Algorithm for Nonlinear Transient Aeroelastic Problems , 1998 .

[5]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[6]  Charbel Farhat,et al.  Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations , 1996 .

[7]  A. R. Humphries,et al.  Dynamical Systems And Numerical Analysis , 1996 .

[8]  C. Farhat,et al.  A scalable Lagrange multiplier based domain decomposition method for time‐dependent problems , 1995 .

[9]  Charbel Farhat,et al.  Matching fluid and structure meshes for aeroelastic computations : a parallel approach , 1995 .

[10]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[11]  Stéphane Lanteri,et al.  Simulation of compressible viscous flows on a variety of MPPs: computational algorithms for unstructured dynamic meshes and performance results , 1994 .

[12]  Carlos A. Felippa,et al.  Superconducting axisymmetric finite elements based on a gauged potential variational principle—I. Formulation , 1994 .

[13]  K. Park,et al.  Second-order structural identification procedure via state-space-based system identification , 1994 .

[14]  Charbel Farhat,et al.  Implicit parallel processing in structural mechanics , 1994 .

[15]  Charbel Farhat,et al.  Stability analysis of dynamic meshes for transient aeroelastic computations , 1993 .

[16]  W. Keith Belvin,et al.  Partitioned solution procedure for control-structure interaction simulations , 1991 .

[17]  Charbel Farhat,et al.  An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems , 1991 .

[18]  O. C. Zienkiewicz,et al.  The finite element method, fourth edition; volume 2: solid and fluid mechanics, dynamics and non-linearity , 1991 .

[19]  Charbel Farhat,et al.  Transient aeroelastic computations using multiple moving frames of reference , 1990 .

[20]  J. Batina Unsteady Euler airfoil solutions using unstructured dynamic meshes , 1989 .

[21]  W. Belvin,et al.  Structural tailoring and feedback control synthesis - An interdisciplinary approach , 1988 .

[22]  Carlos A. Felippa,et al.  Partitioned analysis for coupled mechanical systems , 1988 .

[23]  Bernhard A. Schrefler A partitioned solution procedure for geothermal reservoir analysis , 1985 .

[24]  J. A. Deruntz,et al.  Finite Element Analysis of Shock-Induced Hull Cavitation , 1984 .

[25]  Carlos A. Felippa,et al.  Doubly asymptotic approximations for vibration analysis of submerged structures , 1982 .

[26]  Carlos A. Felippa,et al.  Staggered transient analysis procedures for coupled mechanical systems: Formulation , 1980 .

[27]  Ted Belytschko,et al.  Mixed methods for time integration , 1979 .

[28]  K. C. Park,et al.  Partitioned Transient Analysis Procedures for Coupled-Field Problems. , 1979 .

[29]  I. Miranda,et al.  Implicit-Explicit Finite Elements in Nonlinear Transient Analysis , 1979 .

[30]  C. Felippa,et al.  Computational Aspects of Time Integration Procedures in Structural Dynamics—Part 1: Implementation , 1978 .

[31]  Thomas J. R. Hughes,et al.  IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS , 1978 .

[32]  T. Belytschko,et al.  Stability of explicit‐implicit mesh partitions in time integration , 1978 .

[33]  R. F. Warming,et al.  The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .

[34]  Karl S. Pister,et al.  Mathematical modeling for structural analysis and design , 1972 .

[35]  Thomas L. Geers Residual Potential and Approximate Methods for Three‐Dimensional Fluid‐Structure Interaction Problems , 1971 .

[36]  N. N. Yanenko Application of the Method of Fractional Steps to Hyperbolic Equations , 1971 .

[37]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[38]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[39]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .