Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits

The speed of quantum gates and measurements is a decisive factor for the overall fidelity of quantum protocols when performed on physical qubits with finite coherence time. Reducing the time required to distinguish qubit states with high fidelity is therefore a critical goal in quantum information science. The state-of-the-art readout of superconducting qubits is based on the dispersive interaction with a readout resonator. Here, we bring this technique to its current limit and demonstrate how the careful design of system parameters leads to fast and high-fidelity measurements without affecting qubit coherence. We achieve this result by increasing the dispersive interaction strength, by choosing an optimal linewidth of the readout resonator, by employing a Purcell filter, and by utilizing phase-sensitive parametric amplification. In our experiment, we measure 98.25% readout fidelity in only 48 ns, when minimizing read-out time, and 99.2% in 88 ns, when maximizing the fidelity, limited predominantly by the qubit lifetime of 7.6 us. The presented scheme is also expected to be suitable for integration into a multiplexed readout architecture.

[1]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[2]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[3]  J M Gambetta,et al.  Measurement-induced qubit state mixing in circuit QED from up-converted dephasing noise. , 2012, Physical review letters.

[4]  M. Roukes,et al.  A low-noise series-array Josephson junction parametric amplifier , 1996 .

[5]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[6]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[7]  Y. Salathe,et al.  Deterministic quantum teleportation with feed-forward in a solid state system , 2013, Nature.

[8]  John Clarke,et al.  Heralded state preparation in a superconducting qubit. , 2012, Physical review letters.

[9]  Denis Vion,et al.  Single-shot qubit readout in circuit quantum electrodynamics , 2009, 1005.5615.

[10]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[11]  M. A. Rol,et al.  Active resonator reset in the nonlinear dispersive regime of circuit QED , 2016, 1604.00916.

[12]  A. Wallraff,et al.  Quantum-limited amplification and entanglement in coupled nonlinear resonators. , 2014, Physical review letters.

[13]  Suman Kundu,et al.  Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product , 2015, 1510.03065.

[14]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[15]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[16]  C. Wilson,et al.  Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator , 2015, Nature Communications.

[17]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[18]  Erik Lucero,et al.  Violation of Bell's inequality in Josephson phase qubits , 2009, Nature.

[19]  L. DiCarlo,et al.  Initialization by measurement of a superconducting quantum bit circuit. , 2012, Physical review letters.

[20]  R Patil Vijay,et al.  Observation of quantum jumps in a superconducting artificial atom. , 2010, Physical review letters.

[21]  John M. Martinis,et al.  Multiplexed dispersive readout of superconducting phase qubits , 2011, 1209.1781.

[22]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[23]  L Frunzio,et al.  Approaching unit visibility for control of a superconducting qubit with dispersive readout. , 2005, Physical review letters.

[24]  Jens Koch,et al.  Suppressing Charge Noise Decoherence in Superconducting Charge Qubits , 2007, 0712.3581.

[25]  J. Gambetta,et al.  Improved superconducting qubit readout by qubit-induced nonlinearities. , 2010, Physical review letters.

[26]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  Zijun Chen,et al.  Strong environmental coupling in a Josephson parametric amplifier , 2014, 1401.3799.

[29]  L Frunzio,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2005, Physical review letters.

[30]  David P. DiVincenzo,et al.  Fault-tolerant architectures for superconducting qubits , 2009, 0905.4839.

[31]  Alexandre Blais,et al.  Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting , 2006 .

[32]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[33]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[34]  Alexandre Blais,et al.  Dispersive regime of circuit QED : Photon-dependent qubit dephasing and relaxation rates , 2008, 0810.1336.

[35]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[36]  R. J. Schoelkopf,et al.  Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement , 2007 .

[37]  John M. Martinis,et al.  Quantum theory of a bandpass Purcell filter for qubit readout , 2015, 1504.06030.

[38]  J. M. Gambetta,et al.  Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator , 2010, 1011.1949.

[39]  Jay M. Gambetta,et al.  Rapid Driven Reset of a Qubit Readout Resonator , 2015, 1503.01456.

[40]  Jay M. Gambetta,et al.  Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics , 2015, 1508.01743.

[41]  A. Houck,et al.  High fidelity readout of a transmon qubit using a superconducting low-inductance undulatory galvanometer microwave amplifier , 2014 .

[42]  Jens Koch,et al.  Controlling the spontaneous emission of a superconducting transmon qubit. , 2008, Physical review letters.

[43]  L. DiCarlo,et al.  Fast reset and suppressing spontaneous emission of a superconducting qubit , 2010, 1003.0142.

[44]  Andrew G. Glen,et al.  APPL , 2001 .

[45]  Alexander N. Korotkov,et al.  Measuring a transmon qubit in circuit QED: Dressed squeezed states , 2016, 1606.04204.