Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics

Discrimination du miel de Corse par spectroscopie FT-Raman et chimiometrie. Le miel est un produit complexe a analyser, principalement du fait de sa composition basee sur diverses origines botaniques. La discrimination basee sur l'origine du miel est d’une tres grande importance pour renforcer la confiance du consommateur pour ce produit alimentaire typique. Mais ce n'est pas une tâche facile parce qu’en general, un seul parametre chimique ou physique n'est pas suffisant. L'objectif de cet article est d'investiguer si la spectroscopie FT Raman, comme technique de spectroscopie dite de fingerprinting, combinee a quelques outils de chimiometrie peut etre utilisee comme une methode rapide et fiable pour la discrimination du miel en fonction de son origine. De plus, des modeles de chimiometrie sont construits pour discriminer le miel de Corse et le miel issu d'autres regions en France, Italie, Autriche, Allemagne et Irlande en se basant sur ses spectres de FT-Raman. Les modeles developpes incluent l'emploi de techniques exploratoires comme le critere de Fisher pour la selection de longueurs d’onde et des methodes supervisees comme la Partial Least Squares-Discriminant Analysis (PLS-DA) ou Support Vector Machines (SVM). Tous ces modeles ont montre une proportion de classification correcte entre 85 % et 90 % en moyenne, montrant que la spectroscopie Raman combinee aux traitements de chimiometrie est une maniere prometteuse pour la discrimination rapide et peu couteuse du miel selon son origine.

[1]  K. Ruoff,et al.  Authentication of the botanical origin of honey , 2006 .

[2]  Vincent Baeten,et al.  Spectroscopy: Developments in instrumentation and analysis , 2002 .

[3]  Nikolaos G. Siatis,et al.  FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey. , 2005, Journal of agricultural and food chemistry.

[4]  D. Cozzolino,et al.  Determination of honey quality components by near infrared reflectance spectroscopy , 2003 .

[5]  Gerard Downey,et al.  Application of Fourier transform midinfrared spectroscopy to the discrimination between Irish artisanal honey and such honey adulterated with various sugar syrups. , 2006, Journal of agricultural and food chemistry.

[6]  Werner Luginbühl,et al.  Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy. , 2006, Journal of agricultural and food chemistry.

[7]  Royston Goodacre,et al.  Progress toward the Rapid Nondestructive Assessment of the Floral Origin of European Honey Using Dispersive Raman Spectroscopy , 2002 .

[8]  D. Massart Chemometrics: A Textbook , 1988 .

[9]  Werner Luginbühl,et al.  Authentication of the botanical origin of honey by near-infrared spectroscopy. , 2006, Journal of agricultural and food chemistry.

[10]  Gerard Downey,et al.  Detection of Honey Adulteration by Addition of Fructose and Glucose Using near Infrared Transflectance Spectroscopy , 2003 .

[11]  J. De Baerdemaeker,et al.  The use of front face fluorescence spectroscopy to classify the botanical origin of honey samples produced in Switzerland , 2007 .

[12]  Vincent Baeten,et al.  Detection of the presence of hazelnut oil in olive oil by FT-raman and FT-MIR spectroscopy. , 2005, Journal of agricultural and food chemistry.

[13]  J. Irudayaraj,et al.  Floral classification of honey using mid-infrared spectroscopy and surface acoustic wave based z-Nose Sensor. , 2005, Journal of agricultural and food chemistry.

[14]  Ramón Aparicio,et al.  Detection of virgin olive oil adulteration by Fourier transform Raman spectroscopy , 1996 .

[15]  P. Anzenbacher,et al.  Raman and IR spectroscopy in biology and biochemistry , 1994 .

[16]  Hyeon-Jong Cho,et al.  Acacia Honey Quality Measurement by near Infrared Spectroscopy , 1998 .

[17]  G. Downey,et al.  Near infrared spectral fingerprinting for confirmation of claimed PDO provenance of honey , 2009 .

[18]  H. Edwards,et al.  Fourier Transform Raman Spectroscopy of Honey , 2002 .

[19]  Davide Bertelli,et al.  Classification of Italian honeys by mid-infrared diffuse reflectance spectroscopy (DRIFTS) , 2007 .

[20]  Tom Fearn,et al.  A Preliminary Study on the Characterisation of Honey by near Infrared Spectroscopy , 2002 .

[21]  A. Charlton,et al.  Application of cryoprobe 1H nuclear magnetic resonance spectroscopy and multivariate analysis for the verification of corsican honey. , 2008, Journal of agricultural and food chemistry.

[22]  Vincent Baeten,et al.  Edible oils and fats authentication by Fourier transform Raman spectrometry , 2000 .

[23]  Colm O'Donnell,et al.  Geographical classification of honey samples by near-infrared spectroscopy: a feasibility study. , 2007, Journal of agricultural and food chemistry.

[24]  Vincent Baeten,et al.  Combination of support vector machines (SVM) and near‐infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds , 2004 .

[25]  I. Arvanitoyannis,et al.  Novel Quality Control Methods in Conjunction with Chemometrics (Multivariate Analysis) for Detecting Honey Authenticity , 2005, Critical reviews in food science and nutrition.

[26]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[27]  D. Cozzolino,et al.  The Use of Visible and near Infrared Spectroscopy to Classify the Floral Origin of Honey Samples Produced in Uruguay , 2005 .

[28]  M. Koo,et al.  Determination of the Constituents of Honey by near Infrared Spectroscopy , 1998 .

[29]  T. B. Murphy,et al.  A comparison of model-based and regression classification techniques applied to near infrared spectroscopic data in food authentication studies , 2007 .

[30]  Joseph Maria Kumar Irudayaraj,et al.  Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy , 2002 .