PD control of a second-order system with hysteretic actuator

In this paper, we design a proportional and derivative (PD) controller for a mass-damper-spring system interconnected with a hysteretic actuator, such as, the piezo-actuated stage. The hysteretic actuator is assumed to have a counterclockwise (CCW) input-output (I/O) dynamics (e.g. piezo-actuator) and is modeled by a Duhem operator. Based on the CCW of the hysteretic actuator, we provide sufficient conditions on the controller gains that depend on known intervals where the plant and hysteresis parameters lie such that the velocity of the linear plant converges to the origin. Robustness analysis and experimental results for tracking a constant reference velocity are also presented.

[1]  David Angeli,et al.  Systems with counterclockwise input-output dynamics , 2006, IEEE Transactions on Automatic Control.

[2]  JinHyoung Oh,et al.  Counterclockwise Dynamics of a Rate-Independent Semilinear Duhem Model , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[3]  Isabelle Queinnec,et al.  Stability analysis for linear systems with input backlash through sufficient LMI conditions , 2010, Autom..

[4]  F. Ikhouane,et al.  Systems with Hysteresis: Analysis, Identification and Control Using the Bouc-Wen Model , 2007 .

[5]  Dennis S. Bernstein,et al.  Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.

[6]  Vincent Andrieu,et al.  A unifying point of view on output feedback designs for global asymptotic stabilization , 2009, Autom..

[7]  David W. L. Wang,et al.  Passivity-based stability and control of hysteresis in smart actuators , 2001, IEEE Trans. Control. Syst. Technol..

[8]  R. Iyer,et al.  Control of hysteretic systems through inverse compensation , 2009, IEEE Control Systems.

[9]  A. Teel,et al.  A Smooth Lyapunov Function from a Class-kl Estimate Involving Two Positive Semideenite Functions , 1999 .

[10]  Bayu Jayawardhana,et al.  On the robustness of hysteretic second-order systems with PID: iISS approach , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[11]  Aristides A. G. Requicha,et al.  Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation , 2008, IEEE Transactions on Automation Science and Engineering.

[12]  Andrew R. Teel,et al.  Bounded-Energy-Input Convergent-State Property of Dissipative Nonlinear Systems: An iISS Approach , 2010, IEEE Transactions on Automatic Control.

[13]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[14]  A. Teel,et al.  A smooth Lyapunov function from a class- ${\mathcal{KL}}$ estimate involving two positive semidefinite functions , 2000 .

[15]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[16]  Bayu Jayawardhana,et al.  Stability analysis and controller design for a linear system with Duhem hysteresis nonlinearity , 2012, 2012 American Control Conference (ACC).

[17]  Bayu Jayawardhana,et al.  Stability of systems with the Duhem hysteresis operator: The dissipativity approach , 2012, Autom..

[18]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[19]  Gang Tao,et al.  Adaptive control of system with unknown output backlash , 1995 .

[20]  Bayu Jayawardhana,et al.  On the characterization of the Duhem hysteresis operator with clockwise input-output dynamics , 2012, Syst. Control. Lett..

[21]  Oriol Gomis-Bellmunt,et al.  A limit cycle approach for the parametric identification of hysteretic systems , 2008, Syst. Control. Lett..

[22]  Petar V. Kokotovic,et al.  Adaptive control of systems with unknown output backlash , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.