Comprehensive numerical modeling of vertical-cavity surface-emitting lasers
暂无分享,去创建一个
Kent D. Choquette | Scott W. Corzine | Mial E. Warren | Kevin L. Lear | G. R. Hadley | S. Corzine | K. Choquette | M. Warren | J. W. Scott | K. L. Lear | G. Hadley | K. Lear | J. Scott
[1] W. Kohn,et al. Motion of Electrons and Holes in Perturbed Periodic Fields , 1955 .
[2] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[3] Sham,et al. Effective masses of holes at GaAs-AlGaAs heterojunctions. , 1985, Physical review. B, Condensed matter.
[4] Doyeol Ahn,et al. Optical gain in a strained-layer quantum-well laser , 1988 .
[5] G. R. Hadley,et al. Comprehensive modeling of diode arrays and broad-area devices with applications to lateral index tailoring , 1988 .
[6] Peter S. Zory,et al. A model for GRIN-SCH-SQW diode lasers , 1988 .
[7] Larry A. Coldren,et al. Theoretical gain in strained InGaAs/AlGaAs quantum wells including valence‐band mixing effects , 1990 .
[8] F. Koyama,et al. Transverse mode analysis for surface emitting laser using beam propagation method , 1991 .
[9] Brian Thibeault,et al. Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers , 1993 .
[10] J. A. Lott,et al. Room temperature continuous wave operation of red vertical cavity surface emitting laser diodes , 1993 .
[11] Larry A. Coldren,et al. Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance , 1993 .
[12] L. Coldren,et al. Chapter 1 – OPTICAL GAIN IN III–V BULK AND QUANTUM WELL SEMICONDUCTORS , 1993 .
[13] R. Michalzik,et al. Modeling and design of proton-implanted ultralow-threshold vertical-cavity laser diodes , 1993 .
[14] Modeling the current to light characteristics of index‐guided vertical‐cavity surface‐emitting lasers , 1993 .
[15] J. Lott,et al. Wavelength dependence of the threshold in an InGaP-InAlGaP vertical cavity surface emitting laser , 1994 .
[16] H. Wenzel,et al. Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers , 1994, IEEE Photonics Technology Letters.
[17] K.J. Malloy,et al. Efficient room-temperature continuous-wave AlGaInP/AlGaAs visible (670 nm) vertical-cavity surface-emitting laser diodes , 1994, IEEE Photonics Technology Letters.
[18] C. Tien,et al. Size effects on the temperature rise in vertical-cavity surface-emitting laser diodes , 1994 .
[19] Rajeev J Ram,et al. Scaling laws for gain‐guided vertical cavity lasers with distributed Bragg reflectors , 1994 .
[20] S. A. Chalmers,et al. High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers , 1994, IEEE Photonics Technology Letters.
[21] Klaus Petermann,et al. Beam propagation model for vertical-cavity surface-emitting lasers: threshold properties , 1994 .
[22] Larry A. Coldren,et al. High‐efficiency and low‐threshold InGaAs/AlGaAs quantum‐well lasers , 1994 .
[23] Thomas J. T. Kwan,et al. Time-dependent numerical simulation of vertical cavity lasers , 1994, Photonics West - Lasers and Applications in Science and Engineering.
[24] Kent D. Choquette,et al. Vertical-cavity surface-emitting lasers with 50% power conversion efficiency , 1995 .
[25] Kent D. Choquette,et al. Modal analysis of a small surface emitting laser with a selectively oxidized waveguide , 1995 .
[26] Kent D. Choquette,et al. Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency , 1995 .