Comprehensive numerical modeling of vertical-cavity surface-emitting lasers

We present a comprehensive numerical model for vertical-cavity surface-emitting lasers that includes all major processes affecting cw operation of axisymmetric devices. In particular, our model includes a description of the 2-D transport of electrons and holes through the cladding layers to the quantum well(s), diffusion and recombination of these carriers within the wells, the 2-D transport of heat throughout the device, and a multilateral-mode effective index optical model. The optical gain acquired by photons traversing the quantum wells is computed including the effects of strained band structure and quantum confinement. We employ our model to predict the behavior of higher-order lateral modes in proton-implanted devices and to provide an understanding of index-guiding in devices fabricated using selective oxidation.

[1]  W. Kohn,et al.  Motion of Electrons and Holes in Perturbed Periodic Fields , 1955 .

[2]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[3]  Sham,et al.  Effective masses of holes at GaAs-AlGaAs heterojunctions. , 1985, Physical review. B, Condensed matter.

[4]  Doyeol Ahn,et al.  Optical gain in a strained-layer quantum-well laser , 1988 .

[5]  G. R. Hadley,et al.  Comprehensive modeling of diode arrays and broad-area devices with applications to lateral index tailoring , 1988 .

[6]  Peter S. Zory,et al.  A model for GRIN-SCH-SQW diode lasers , 1988 .

[7]  Larry A. Coldren,et al.  Theoretical gain in strained InGaAs/AlGaAs quantum wells including valence‐band mixing effects , 1990 .

[8]  F. Koyama,et al.  Transverse mode analysis for surface emitting laser using beam propagation method , 1991 .

[9]  Brian Thibeault,et al.  Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers , 1993 .

[10]  J. A. Lott,et al.  Room temperature continuous wave operation of red vertical cavity surface emitting laser diodes , 1993 .

[11]  Larry A. Coldren,et al.  Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance , 1993 .

[12]  L. Coldren,et al.  Chapter 1 – OPTICAL GAIN IN III–V BULK AND QUANTUM WELL SEMICONDUCTORS , 1993 .

[13]  R. Michalzik,et al.  Modeling and design of proton-implanted ultralow-threshold vertical-cavity laser diodes , 1993 .

[14]  Modeling the current to light characteristics of index‐guided vertical‐cavity surface‐emitting lasers , 1993 .

[15]  J. Lott,et al.  Wavelength dependence of the threshold in an InGaP-InAlGaP vertical cavity surface emitting laser , 1994 .

[16]  H. Wenzel,et al.  Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers , 1994, IEEE Photonics Technology Letters.

[17]  K.J. Malloy,et al.  Efficient room-temperature continuous-wave AlGaInP/AlGaAs visible (670 nm) vertical-cavity surface-emitting laser diodes , 1994, IEEE Photonics Technology Letters.

[18]  C. Tien,et al.  Size effects on the temperature rise in vertical-cavity surface-emitting laser diodes , 1994 .

[19]  Rajeev J Ram,et al.  Scaling laws for gain‐guided vertical cavity lasers with distributed Bragg reflectors , 1994 .

[20]  S. A. Chalmers,et al.  High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers , 1994, IEEE Photonics Technology Letters.

[21]  Klaus Petermann,et al.  Beam propagation model for vertical-cavity surface-emitting lasers: threshold properties , 1994 .

[22]  Larry A. Coldren,et al.  High‐efficiency and low‐threshold InGaAs/AlGaAs quantum‐well lasers , 1994 .

[23]  Thomas J. T. Kwan,et al.  Time-dependent numerical simulation of vertical cavity lasers , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[24]  Kent D. Choquette,et al.  Vertical-cavity surface-emitting lasers with 50% power conversion efficiency , 1995 .

[25]  Kent D. Choquette,et al.  Modal analysis of a small surface emitting laser with a selectively oxidized waveguide , 1995 .

[26]  Kent D. Choquette,et al.  Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency , 1995 .