Model Predictive Control of Variable Density Multiphase Flows Governed by Diffuse Interface Models

Abstract We present a nonlinear model predictive framework for closed-loop control of two-phase flows governed by Cahn-Hilliard Navier-Stokes system with variable density. The control goal consists in achieving a prescribed concentration distribution in the Cahn-Hilliard part through distributed and/or boundary control of the flow part. Special emphasis is taken on quick control responses which are achieved through the inexact solution of the optimal control problems appearing in the model predictive control strategy. The resulting control concept is known as instantaneous control and is applied to feedback control of the Navier-Stokes system in e.g. Choi et al. (1999); Hinze (2005a); Hinze and Volkwein (2002). We provide numerical investigations which indicate that instantaneous wall parallel boundary control of the flow part is well suited to achieve a prescribed concentration distribution in the variable density Cahn-Hilliard Navier-Stokes system.

[1]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[2]  Chang Shu,et al.  Diffuse interface model for incompressible two-phase flows with large density ratios , 2007, J. Comput. Phys..

[3]  A. Reusken,et al.  Numerical Methods for Two-phase Incompressible Flows , 2011 .

[4]  J. Oden,et al.  Finite Element Methods for Flow Problems , 2003 .

[5]  Lars Grüne,et al.  Analysis of unconstrained NMPC schemes with incomplete optimization , 2010 .

[6]  Rüdiger Verfürth A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations , 2010 .

[7]  Moulay Hicham Tber,et al.  An adaptive finite-element Moreau–Yosida-based solver for a non-smooth Cahn–Hilliard problem , 2011, Optim. Methods Softw..

[8]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[9]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[10]  D. Kuzmin,et al.  Quantitative benchmark computations of two‐dimensional bubble dynamics , 2009 .

[11]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[12]  David Kay,et al.  Finite element approximation of a Cahn−Hilliard−Navier−Stokes system , 2008 .

[13]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[14]  Andreas Kugi,et al.  Stability and Incremental Improvement of Suboptimal MPC Without Terminal Constraints , 2010, IEEE Transactions on Automatic Control.

[15]  Karl Kunisch,et al.  Three Control Methods for Time-Dependent Fluid Flow , 2000 .

[16]  Martin Berggren,et al.  Hybrid differentiation strategies for simulation and analysis of applications in C++ , 2008, TOMS.

[17]  H. Abels,et al.  Thermodynamically Consistent, Frame Indifferent Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities , 2011, 1104.1336.

[18]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[19]  Michael Hinze Instantaneous Closed Loop Control of the Navier-Stokes System , 2005, SIAM J. Control. Optim..

[20]  Paul Papatzacos,et al.  Diffuse-Interface Models for Two-Phase Flow , 2000 .

[21]  K. Kunisch,et al.  Instantaneous control of backward-facing step flows , 1999 .

[22]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[23]  Stefan Volkwein,et al.  Analysis of instantaneous control for the Burgers equation , 2002 .

[24]  Christian Kahle,et al.  A Nonlinear Model Predictive Concept for Control of Two-Phase Flows Governed by the Cahn-Hilliard Navier-Stokes System , 2011, System Modelling and Optimization.

[25]  Christian Kahle,et al.  An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system , 2013, J. Comput. Phys..

[26]  P TaylorC.Hood,et al.  Navier-Stokes equations using mixed interpolation , 1974 .

[27]  Charles M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.

[28]  Jouko Mickelsson,et al.  The Nonlinear σ Model , 1989 .

[29]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[30]  M. Diehl,et al.  Nominal stability of real-time iteration scheme for nonlinear model predictive control , 2005 .